MHB Hair Canada's question at Yahoo Answers (Constant series)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Hair Series
Click For Summary
The series defined by a_n = c diverges unless c equals zero. For c greater than zero, the series diverges to positive infinity, while for c less than zero, it diverges to negative infinity. The mth partial sum is represented as S_m = mc, which leads to the conclusion that the series converges only when c equals zero. This indicates that the behavior of the series is directly tied to the value of c. Understanding this relationship is crucial for determining the convergence or divergence of the series.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

no matter what value I put for n, i keep getting c. So my best guess is that this is a diverging sequence?

Here is a link to the question:

Math: Is a_n = c diverging or converging? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Hair Canada,

The series is $\displaystyle \sum_{n=1}^{+\infty}a_n=\displaystyle\sum_{n=1}^{+\infty}c$. This means that the mth partial sum is $S_m=a_1+a_2+\ldots+a_m=mc$ so, $$S=\lim_{m\to \infty}S_m=\lim_{m\to +\infty}mc=\left \{ \begin{matrix}{ +\infty}&\mbox{ if }& c>0\\-\infty & \mbox{if}& c<0\\0 & \mbox{if}& c=0\end{matrix} \right.$$ As a consequence the series is convergent if and only if $c=0$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
8K