- #1
IamVector
- 98
- 9
- Homework Statement:
-
A block is pushed onto a conveyor belt. The belt
is moving at velocity v0 = 1 m/s, the block’s initial velocity
u0 = 2 m/s is perpendicular to the belt’s velocity. During its
subsequent motion, what is the minimum velocity of the block
with respect to the ground? The coefficient of friction is large
enough to prevent the block from falling off the belt.
- Relevant Equations:
-
hint given : we use the conveyor’s frame, but
as we are asked about the speed in lab frame, we need
to switch back to the lab frame. In the conveyor’s frame,
the velocity vector becomes shorter while preserving the
direction, i.e. can be represented as ⃗w = k ⃗w0, where its
initial value ⃗w0 = ⃗v0 −⃗u0 and the factor k takes numerical
values from 0 to 1. Hence, the velocity in the lab frame
⃗v = ⃗u0 + k ⃗w0: this is a vector connecting the right angle
of the right triangle defined by its catheti ⃗u0 and ⃗v0 with a
point on the hypotenuse; the specific position of this point
depends on the value of the factor k (which is a function
of time).
stuck on this question