- #1

- 2

- 0

## Homework Statement

Using the Debye dispersion approximation, calculate the heat capacity of a harmonic, monatomic, 1D lattice. Next, find the temperature dependence in the low temperature limit. (Assume that the longitudinal mode has spring constant CL = C, and the two transverse modes both have spring constant CT = 0.2C. )

## Homework Equations

[itex]C_{lattice}=k_{B}\sum[/itex]

_{p}∫d[itex]\omega[/itex]D

_{p}([itex]\omega[/itex]) [itex]\frac{x^{2}e^{x}}{(e^{x}-1)^{2}}[/itex] , p is over all of the modes

[itex]d\omega[/itex] [itex]D_{p}( \omega)[/itex] = [itex]\frac{Lk_{B}T}{hv\pi}dx[/itex]

where [itex]D_{p}( \omega)[/itex] = density of states

[itex]c_p[/itex] = the spring constants for longitudinal and transverse

## The Attempt at a Solution

So I should end up with 3 heat capacities to add together, two transverse and one longitudinal.

[itex]C_{lattice}=k_{B}\sum_p \int^{\inf}_{0} \frac{Lk_{B}T}{hv\pi}\frac{x^{2}e^{x}}{(e^{x}-1)^{2}}

\omega D_{p}(\omega) = \sum_{p}\frac{Lk_{B}T}{hv\pi}\frac{\pi^{2}}{3}K\sqrt{\frac{M}{c_{p}}}[/itex]

[itex]C_{lattice}[/itex] = [itex]\frac{\pi L k_{B}}{3h}\sqrt{\frac{M}{c_{p}}}KT(2\sqrt{5}+1)[/itex]

So this right here is my final solution, and I'm trying to see how far off base I am.

Last edited: