1. Limited time only! Sign up for a free 30min personal tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Homework Help: Debye internal energy for heat capacity

  1. May 24, 2010 #1
    I'm working from Feynman's definition of internal energy for the Debye theory of heat capacity. I'm trying to use that to derive the normal definition of heat capacity that I've seen. But I'm running into a problem. Note, in the following V_0 is frequency, whereas V is volume (that's how Feynman writes it).

    [tex]

    U=\frac{3Vk_{B}^{4}T^{4}}{2\pi^{2}\hbar^{3}V_{0}^{3}}\int_{0}^{\Theta_{D}/T}\frac{x^{3}e^{x}}{\left (e^x - 1\right )} dx

    [/tex]

    [tex]
    = \frac{12\pi V k_{B}T^{4}}{\Theta_{D}^{3}}\int_{0}^{\Theta_{D}/T}\frac{x^{3}e^{x}}{\left (e^x - 1\right )} dx

    [/tex]

    [tex]

    = \frac{4\pi V}{3}\frac{9k_{B}T^{4}}{\Theta_{D}^{3}}\int_{0}^{\Theta_{D}/T}\frac{x^{3}e^{x}}{\left (e^x - 1\right )} dx

    [/tex]

    I get [tex] V = \frac{3N}{4 \pi} [/tex], in order to obtain

    [tex]

    C_{V} =9Nk_{B}\left (\frac{T}{\Theta_{D}} \right)^{3}\int_{0}^{\Theta_{D}/T}\frac{x^{4}e^{x}}{\left (e^x - 1\right )^{2}} dx

    [/tex]

    Why would V be this amount? I don't understand why this must be the case, unless I'm making a mistake somewhere, but I can't see where. The only way I can get the normal definition of Debye heat capacity is if I set V equal to this.

    http://books.google.com/books?id=Ou...e+debye+temperature"&cd=1#v=onepage&q&f=false
     
    Last edited: May 24, 2010
  2. jcsd
  3. Jun 23, 2010 #2
    how can i solve the integration in this equation???
     
Share this great discussion with others via Reddit, Google+, Twitter, or Facebook