Heat Equation for Cylinder Wire Problem

Click For Summary
SUMMARY

The forum discussion revolves around the heat equation applied to a cylindrical wire with radius r_i, length L, resistance R, and current I. The heat produced is expressed as Q = R I^2 \pi r_i^2 L, and the participants debate the correct application of Fourier's law and the divergence theorem in this context. They clarify that the rate of heat generation per unit volume is constant and should be modeled correctly in the equations, particularly emphasizing that Q should be defined as Q = I^2 R / \pi r_i^2 L. The discussion concludes with insights on integrating the heat equation and the implications of radial positions.

PREREQUISITES
  • Understanding of the heat equation in cylindrical coordinates
  • Familiarity with Fourier's law of heat conduction
  • Knowledge of the divergence theorem in vector calculus
  • Basic principles of electrical resistance and power calculations
NEXT STEPS
  • Study the derivation of the heat equation in cylindrical coordinates
  • Learn about the application of Fourier's law in different geometries
  • Explore the divergence theorem and its applications in physics
  • Investigate the relationship between electrical power and thermal energy generation
USEFUL FOR

Students and professionals in physics, engineering, and applied mathematics, particularly those focusing on thermal dynamics, electrical engineering, and heat transfer analysis.

member 428835
hi pf!

i'm wondering if you can help me with the heat eq for a basic cylinder wire problem. namely, we have a wire with radius ##r_i## and length ##L##and resistance is ##R## and current is ##I##. Thus heat produced $$Q = R I^2 \pi r_i^2 L$$. When using the heat eq, we assume time rate of change is negligable. flux is governed by fouriers law, and the divergence theorem gives us the following: $$\int_V k \nabla^2 T dv + \int_V \frac{Q}{\pi r^2 L}dv = 0$$.is this right though? namely, is ##Q## divided by an arbitrary ##r## or the radius ##r_i##?

thanks so much!
 
Science news on Phys.org
joshmccraney said:
heat produced
Q=RI 2 πr 2 i L​
Care to tell us how you came up with this expression?

@Chestermiller , @Orodruin
 
Last edited:
Bystander said:
Care to tell us how you came up with this expression?​
I knew units for heat generation in 3-D need to be watts per cubic meter. So I simply tracked units. This Q multiplied by dv gives us watts, which is the unit we're after.
 
But what are the units of k\nabla^2T (k should be the thermal diffusivity)?

[edit: I mean k=thermal conductivity of course]
 
Last edited:
bigfooted said:
But what are the units of k\nabla^2T (k should be the thermal diffusivity)?
Watts per cubic meter, right?
 
and of the term \frac{Q}{\pi r^2 L} = I^2 R \frac{\pi r_i^2 L}{\pi r^2 L} (with I^2R the electric power)?
 
bigfooted said:
and of the term \frac{Q}{\pi r^2 L} = I^2 R \frac{\pi r_i^2 L}{\pi r^2 L} (with I^2R the electric power)?
watts? am i missing something here? seems like you are eluding to something.
 
oh shoooot! i should have defined ##Q : Q = I^2 R / \pi r_i ^2 L## right? but is it ##r_i## or ##r##?
 
Last edited by a moderator:
joshmccraney said:
oh shoooot! i should have defined ##Q : Q = I^2 R / \pi r_i ^2 L## right? but is it ##r_i## or ##r##?
ri. The rate of heat generation per unit volume in the wire is constant. ri should also be what appears in the equation with the integrals.

Chet
 
  • #10
Hi chet!

ok, so what i should have modeled from the start is $$\int_v k \nabla ^2T dv = \int_v Q dv : Q = I^2 R / \pi r_i^2 L$$ do you all agree? if so, solving would be (using 1-D radial flow in polar coordinates) $$-k\frac{1}{r}\frac{d}{dr} ( r T') = Q \implies \\ -k d(r T') = rQdr \implies \\ \int_?^{??} -k d(r T') = \int_0^{r_i}rQdr$$
but what are my bounds for integration? any ideas?
 
Last edited by a moderator:
  • #11
Q is a constant, so it comes out of the integral. You integrate both sides from 0 to ri.

Chet
 
  • #12
Are you sure? I'm thinking if we had a differential equation over some interval of time ##[0,T]##, say, $$\frac{dy}{dt} = k \implies \\ \int_0^T \frac{dy}{dt} dt = \int_0^T k dt \implies \\ \int_{y(0)}^{y(T)} dy = \int_0^T k dt$$ but notice we do not have ##[0,T]## on both sides.
 
  • #13
joshmccraney said:
Are you sure? I'm thinking if we had a differential equation over some interval of time ##[0,T]##, say, $$\frac{dy}{dt} = k \implies \\ \int_0^T \frac{dy}{dt} dt = \int_0^T k dt \implies \\ \int_{y(0)}^{y(T)} dy = \int_0^T k dt$$ but notice we do not have ##[0,T]## on both sides.
OK. 0 to rT' evaluated at ri.

Chet
 
  • #14
Chestermiller said:
OK. 0 to rT' evaluated at ri.

Chet
But in this case we wouldn't have a function of ##r##. Would we instead just integrate from ##0,r## generally so we can still have a profile rather than a number?
 
  • #15
joshmccraney said:
But in this case we wouldn't have a function of ##r##. Would we instead just integrate from ##0,r## generally so we can still have a profile rather than a number?
That's fine, but you seemed to be applying the equation over the entire volume. Integrating out to R is just fine.

Chet
 
  • #16
So if I'm understanding this correctly we would have $$-k\int_{0*T'(0)}^{r*T'(r)} d(r T') = Q\int_0^r r dr \implies \\ -k r T'(r) = Qr^2/2 \implies \\ -kT'(r) = Qr/2 \implies \\ -kT'(r) = \frac{R I^2}{2 \pi r_i^2 L r}$$ is this right so far?
 
Last edited by a moderator:
  • #17
But then if I made a flux balance we could write ##q = R I^2 / (2 \pi r L)## watts/sq. meter. Fourier's law implies also ##q = -k T'(r)## (1-D radial flow). Thus, $$-kT'(r) = \frac{R I^2} { 2 \pi r L}$$ which doesn't agree with the above. Can you help me with what I'm doing wrong?
 
  • #18
joshmccraney said:
So if I'm understanding this correctly we would have $$-k\int_{0*T'(0)}^{r*T'(r)} d(r T') = Q\int_0^r r dr \implies \\ -k r T'(r) = Qr^2/2 \implies \\ -kT'(r) = Qr/2 \implies \\ -kT'(r) = \frac{R I^2}{2 \pi r_i^2 L r}$$ is this right so far?
No. Check your algebra.
 
  • #19
Chestermiller said:
No. Check your algebra.
Sorry, we would have $$-kT'(r) = \frac{RI^2 r}{2 \pi r_i^2 L}$$ right? But this still doesn't agree with the flux balance.
 
  • #20
joshmccraney said:
Sorry, we would have $$-kT'(r) = \frac{RI^2 r}{2 \pi r_i^2 L}$$ right? But this still doesn't agree with the flux balance.
Who says? Multiply both sides by 2πrL and see what you get.

Chet
 
  • #21
Chestermiller said:
Who says? Multiply both sides by 2πrL and see what you get.

Chet
I must be missing something. The flux balance states ##-kT'(r) = R I^2 / (2 \pi r L)## yet the heat eq method states ##-kT'(r) = R I^2 r / (2 \pi r_i^2 L)##. These two are different. I must have made a mistake but I'm not seeing it.

Thanks so much for your help (and please continue)!
 
  • #22
If the ##r_i^2## was simply ##r^2## then we would have agreeing equations.
 
  • #23
joshmccraney said:
I must be missing something. The flux balance states ##-kT'(r) = R I^2 / (2 \pi r L)## yet the heat eq method states ##-kT'(r) = R I^2 r / (2 \pi r_i^2 L)##. These two are different. I must have made a mistake but I'm not seeing it.

Thanks so much for your help (and please continue)!
The first equation is correct only at r = ri. The second equation is correct at all radial locations.
 
  • #24
Chestermiller said:
The first equation is correct only at r = ri. The second equation is correct at all radial locations.
Can you elaborate here. I'm wondering what I have done wrong in the flux balance. It really looked right to me.
 
  • #25
joshmccraney said:
Can you elaborate here. I'm wondering what I have done wrong in the flux balance. It really looked right to me.
If the rate of heat generation within the wire is spatially uniform, what fraction of the heat is generated between r = 0 and arbitrary radial position r? What is the rate of heat generation within the wire per unit volume? What is the rate of heat generation between r = 0 and arbitrary radial position r?

Chet
 
  • #26
Chestermiller said:
If the rate of heat generation within the wire is spatially uniform, what fraction of the heat is generated between r = 0 and arbitrary radial position r? Chet
##\pi r^2 L / (\pi r_i^2 L) = (r/r_i)^2##
Chestermiller said:
What is the rate of heat generation within the wire per unit volume?
Chet
##R I^2 / (\pi r_i^2 L)##
Chestermiller said:
What is the rate of heat generation between r = 0 and arbitrary radial position r?
Chet
$$\int_0^L \int_0^{2 \pi} \int_0^r \frac{R I^2}{ \pi r_i^2 L} (r dr d \theta d z) = R I^2 \left(\frac{r}{ r_i}\right)^2$$
 
  • #27
Am I missing something though? How does this relate to flux (if we are doing the flux balance)?
 
  • #28
joshmccraney said:
Am I missing something though? How does this relate to flux (if we are doing the flux balance)?
OK. Now go back to that equation I indicated and multiply both sides by 2πrL. Show us what you get. Then see if you can interpret what each side of the equation represents physically.

Chet
 
  • #29
The r.h.s. is (obviously) the heat generation at some arbitrary distance r, as you've already said. and i agree that the left hand side has the same units, but it's difficult for me to see this without the r.h.s (i understand that it is heat generation, but i don't think it's obvious that it's total heat generation from 0 to r).

but the relation is obvious now! thanks! although what did i do wrong in trying to make the flux balance with an arbitrary r? as you've said, it's only correct when ##r=r_i##.
 
  • #30
joshmccraney said:
The r.h.s. is (obviously) the heat generation at some arbitrary distance r, as you've already said. and i agree that the left hand side has the same units, but it's difficult for me to see this without the r.h.s (i understand that it is heat generation, but i don't think it's obvious that it's total heat generation from 0 to r).

but the relation is obvious now! thanks! although what did i do wrong in trying to make the flux balance with an arbitrary r? as you've said, it's only correct when ##r=r_i##.
The flux balance is wrong because it implicitly assumes that all the heat generation takes place between r = 0 and radial location r, and none of the heat is generated between r and ri.

Chet
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 32 ·
2
Replies
32
Views
4K
Replies
12
Views
2K
Replies
4
Views
1K
  • · Replies 20 ·
Replies
20
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K