Hak said:
I'm not sure I understand what you are saying. That is, I didn't understand how I should assume in advance that the shape of the drop is hemispherical. I would equalize upward forces and downward forces, differentiate both members of the equation, and get an ODE from which to derive the shape of the drop. Assuming the latter to be hemispherical (as I understand it, that's not really correct) right off the bat, I just wouldn't know how to do it.
I have been trying to discover the correct shape. Can't find anything online. Here is where I got to with my own efforts:
All derivatives are wrt distance, s, along the surface from lowest point unless otherwise stated.
We consider a horizontal slice through the droplet.
Theta is the angle of the surface to the horizontal.
p is pressure within the droplet, pa is atmospheric pressure.
Using the Laplace-Young equation: $$p=\alpha(1/r+\theta')+p_a$$
F is the force exerted by adjacent layers: $$F=p\pi r^2$$
T is the vertical component of the force due to tension in the surface $$T=\alpha 2\pi r\sin(\theta)$$
The gravitational downward force on an element is $$\pi r^2\sin(\theta)\rho g\Delta s$$ The upward vertical force due to air pressure on an element is $$p_a2\pi r\Delta r$$
Force balance gives: $$\pi r^2\sin(\theta)\rho g\Delta s+\Delta T+\Delta F=p_a2\pi r\Delta r$$
$$\pi r^2\sin(\theta)\rho g+T'+F'=p_a2\pi rr'$$
$$r'=\cos(\theta)$$
$$T'=2\alpha\pi (\cos(\theta)\sin(\theta)+r\cos(\theta)\theta')$$ $$p'=\alpha(r^{-2}\cos(\theta)+\theta'')$$
$$F'=p'\pi r^2+p2\pi r\cos(\theta)$$
$$=\alpha\pi(\cos(\theta)+r^2\theta'')+(p_a+\alpha(1/r+\theta')) 2\pi r\cos(\theta)$$
$$\pi r^2\sin(\theta)\rho g+T'+F'=p_a2\pi rr'$$
This produces an ODE, but there are too many variables. It has both ##r(s)## and ##\theta(s)##. In principle, that can be resolved using ##r'=\cos(\theta)##, but eliminating theta will result in arccos theta terms, and to eliminate r we would have to differentiate the equation so that it only involves derivatives of r, not r itself.
For these reasons, I suspect the problem intends we take the portion below the point where the surface is vertical as being a hemisphere. It won't be far wrong.
But even then, it will only let us get a height for that portion. To find the entire height we would still need to solve the shape equation.
Maybe my equations are wrong.