Dr.Brain said:
For complete understanding of Uncertainity Principle , check out :
http://www.doxlab.co.nr/
TOPIC#2 on the above site is Heisenberg's..
I would not recommend the site listed above. It perpetuates the misconception of the HUP that I have written about[1], that it is the uncertainty in a single measurement. I have seen this mistake repeated several times within the past week on here.
The HUP is NOT about the uncertainty in INSTRUMENTATION or measurement. One can easily verify this by looking at HOW we measure certain quantities. It is silly for Heisenberg to know about technological advances in the future and how much more accurate we can measure things. This is NOT what the HUP is describing. The HUP is NOT describing how well we know about the quantities in a
single measurement. I can make as precise of a measurement of the position and momentum of an electron as arbitrary as I want
simultaneously, limited to the technology I have on hand. I can make improvements in my accuracy of one without affecting the accuracy of measurement of the other.
What the HUP is telling you is the difference between a classical system and a quantum system. In a classical system, if you have a set of
identical initial condition, and you measure ONE observable, and then you measure another observable, you will continue to get the SAME value of that 2nd observable everytime you measure the same value of that 1st observable. The more accurate you measure the 1st observable, the more accuract you can
predict the value of the 2nd observable the next time you want to do such a measurement. The only limitation to how accurate you can determine these observable is the limitation to your measuring instruments. But these limitations do NOT scale like the HUP. You don't make one worse as the other one becomes better, because these are technical issues and are not related to one another.
On the other hand, in a quantum system, under the IDENTICAL initial conditions, even if you measure a series of identical values for the 1st observable, the 2nd observable may NOT yield the identical result each time. In fact, as you narrow down the uncertainty of the 1st observable, the 2nd observable may start showing wildly different values as you do this REPEATEDLY. Therefore, unlike the classical system, your ability to know and predict what is going to be the outcome of the 2nd observable goes progressively WORSE as you improve your knowledge about the 1st observable!
Again, it has NOTHING to do with the uncertainty in a SINGLE measurement! It doesn't mean that if you measure with utmost accuracy the position of an electron, that that electron momentum is "spread out" all over the place. This is wrong! I can STILL make an accurate determination of that electron's momentum - only my instrument will limit my accuracy of determining that. However, my ability to know what its momentum is going to be the NEXT time I measure it under the idential situation is what is dictated by the HUP!
Zz
[1] [11-15-2004 09:26 AM] - Misconception of the Heisenberg Uncertainty Principle