I Helmholtz's theorem and charge density

AI Thread Summary
Helmholtz's theorem allows for the construction of an electrostatic potential function when the electric charge density approaches zero faster than 1/r^2 as r approaches infinity. For a finite region of space with charge density, the theorem holds true since the charge density is strictly zero outside a certain radius. The Poisson equation can be solved by integrating the charge density over a sphere containing all the charge. The theorem remains valid even if the charge density behaves as 1/r^β with β greater than 1, as the potential can be adjusted by subtracting a constant. This ensures the integral converges under these conditions.
Ahmed1029
Messages
109
Reaction score
40
According to Helmholtz’s theorem, if electric charge density goes to to zero as r goes to infinity faster than 1/r^2 I'm able to construct an electrostatic potential function using the usual integral over the source, yet I don't understand how this applies to a chunk of charge in some region of space, regarding how fast its charge density does to zero. For instance, suppose I only have a small sphere of charge, how fast does does charge density go to zero as r goes to infinity?
 
Physics news on Phys.org
If you have a charge density different from 0 only within a finite region in space (mathematically speaking, ##\rho## has "compact support"), the assumptions of the theorem are fulfilled, because it's strictly 0 for ##r=\vec{x}>R## for some radius, ##R##. Then the solution of the Poisson equation (in SI units),
$$\Delta \Phi(\vec{x})=-\frac{1}{\epsilon_0} \rho(\vec{x})$$
is given by "summing up Coulomb potentials", i.e.,
$$\Phi(\vec{x})=\int_{B_R} \mathrm{d}^3 x' \frac{\rho(\vec{x}')}{4 \pi \epsilon_0 |\vec{x}-\vec{x}'|},$$
where ##B_R## is the solid sphere ("ball") of radius ##R## around the origin, which by definition contains all the charge there is.

Helmholtz's theorem in this form is for sure also valid under the conditions you quote, because if ##\rho(\vec{x}) = \mathcal{O}(r^{-\alpha})## for ##|\vec{x}|\rightarrow \infty## and ##\alpha>2##, then
$$\mathrm{d}^3 x' \frac{\rho(\vec{x}')}{|\vec{x}-\vec{x}'|} = \mathrm{d} r' \mathrm{d\vartheta'} \mathrm{d} \varphi' \sin \vartheta' \mathcal{O}(r^{\prime -\alpha+1}),$$
i.e., the integrand falls faster with ##r'## than ##1/r##, and thus the integral over ##r'## converges for ##r' \rightarrow \infty##. The integrals over the angles is over finite regions (##\vartheta \in (0,\pi)##, ##\varphi \in (0,2 \pi)##) and thus don't diverge.

The theorem even works if ##\rho=\mathcal{O}(1/r^\beta)## with ##\beta>1##, because the potential is defined only up to an additive constant anyway. In this case you just subtract a clever constant, defining
$$\Phi(\vec{x})=\int_{\mathbb{R}^3} \mathrm{d}^3 x' \frac{\rho(\vec{x}')}{4 \pi \epsilon_0} \left (\frac{1}{|\vec{x}-\vec{x}|}-\frac{1}{|\vec{x}_0-\vec{x}'|} \right).$$
The expression in the parentheses goes like ##\mathcal{O}(r^{\prime 2})## for ##r' \rightarrow \infty##, and thus the integral converges even under the more general condition on ##\rho##.
 
got it thanks
 
Thread 'Motional EMF in Faraday disc, co-rotating magnet axial mean flux'
So here is the motional EMF formula. Now I understand the standard Faraday paradox that an axis symmetric field source (like a speaker motor ring magnet) has a magnetic field that is frame invariant under rotation around axis of symmetry. The field is static whether you rotate the magnet or not. So far so good. What puzzles me is this , there is a term average magnetic flux or "azimuthal mean" , this term describes the average magnetic field through the area swept by the rotating Faraday...
It may be shown from the equations of electromagnetism, by James Clerk Maxwell in the 1860’s, that the speed of light in the vacuum of free space is related to electric permittivity (ϵ) and magnetic permeability (μ) by the equation: c=1/√( μ ϵ ) . This value is a constant for the vacuum of free space and is independent of the motion of the observer. It was this fact, in part, that led Albert Einstein to Special Relativity.
Back
Top