Helmholtz's theorem and charge density

Click For Summary
SUMMARY

Helmholtz's theorem states that if electric charge density, denoted as ##\rho##, approaches zero faster than 1/r² as r approaches infinity, an electrostatic potential function can be constructed using the integral over the charge source. For a finite region of space where charge density is non-zero, the theorem holds true, particularly when ##\rho## has compact support. The solution to the Poisson equation, given by $$\Delta \Phi(\vec{x})=-\frac{1}{\epsilon_0} \rho(\vec{x})$$, can be expressed as an integral of Coulomb potentials, ensuring convergence under specific conditions of charge density decay.

PREREQUISITES
  • Understanding of Helmholtz's theorem in electrostatics
  • Familiarity with the Poisson equation in SI units
  • Knowledge of Coulomb potentials and their mathematical representation
  • Basic concepts of charge density and its behavior at infinity
NEXT STEPS
  • Study the implications of Helmholtz's theorem in electrostatics
  • Learn about the mathematical derivation of the Poisson equation
  • Explore the properties of charge density with compact support
  • Investigate convergence criteria for integrals in electrostatics
USEFUL FOR

Physicists, electrical engineers, and students studying electromagnetism who seek to deepen their understanding of electrostatic potentials and charge density behavior in finite regions of space.

Ahmed1029
Messages
109
Reaction score
40
According to Helmholtz’s theorem, if electric charge density goes to to zero as r goes to infinity faster than 1/r^2 I'm able to construct an electrostatic potential function using the usual integral over the source, yet I don't understand how this applies to a chunk of charge in some region of space, regarding how fast its charge density does to zero. For instance, suppose I only have a small sphere of charge, how fast does does charge density go to zero as r goes to infinity?
 
Physics news on Phys.org
If you have a charge density different from 0 only within a finite region in space (mathematically speaking, ##\rho## has "compact support"), the assumptions of the theorem are fulfilled, because it's strictly 0 for ##r=\vec{x}>R## for some radius, ##R##. Then the solution of the Poisson equation (in SI units),
$$\Delta \Phi(\vec{x})=-\frac{1}{\epsilon_0} \rho(\vec{x})$$
is given by "summing up Coulomb potentials", i.e.,
$$\Phi(\vec{x})=\int_{B_R} \mathrm{d}^3 x' \frac{\rho(\vec{x}')}{4 \pi \epsilon_0 |\vec{x}-\vec{x}'|},$$
where ##B_R## is the solid sphere ("ball") of radius ##R## around the origin, which by definition contains all the charge there is.

Helmholtz's theorem in this form is for sure also valid under the conditions you quote, because if ##\rho(\vec{x}) = \mathcal{O}(r^{-\alpha})## for ##|\vec{x}|\rightarrow \infty## and ##\alpha>2##, then
$$\mathrm{d}^3 x' \frac{\rho(\vec{x}')}{|\vec{x}-\vec{x}'|} = \mathrm{d} r' \mathrm{d\vartheta'} \mathrm{d} \varphi' \sin \vartheta' \mathcal{O}(r^{\prime -\alpha+1}),$$
i.e., the integrand falls faster with ##r'## than ##1/r##, and thus the integral over ##r'## converges for ##r' \rightarrow \infty##. The integrals over the angles is over finite regions (##\vartheta \in (0,\pi)##, ##\varphi \in (0,2 \pi)##) and thus don't diverge.

The theorem even works if ##\rho=\mathcal{O}(1/r^\beta)## with ##\beta>1##, because the potential is defined only up to an additive constant anyway. In this case you just subtract a clever constant, defining
$$\Phi(\vec{x})=\int_{\mathbb{R}^3} \mathrm{d}^3 x' \frac{\rho(\vec{x}')}{4 \pi \epsilon_0} \left (\frac{1}{|\vec{x}-\vec{x}|}-\frac{1}{|\vec{x}_0-\vec{x}'|} \right).$$
The expression in the parentheses goes like ##\mathcal{O}(r^{\prime 2})## for ##r' \rightarrow \infty##, and thus the integral converges even under the more general condition on ##\rho##.
 
  • Like
Likes   Reactions: Ahmed1029
got it thanks
 
  • Like
Likes   Reactions: vanhees71

Similar threads

  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 3 ·
Replies
3
Views
519
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 16 ·
Replies
16
Views
2K