I am considering a simple problem of a sphere of isotropic dielectric media (permittivity ## \epsilon ## and Radius ##R##) placed in a uniform electric field ## E_0 ## (z-direction). The problem is from Griffiths Chapter 4, example 7.
Since, it is a linear dielectric material, ## D = \epsilon E...
Why don't electrons leave the metal surface? I have searched the internet for the answer and from my teachers they all say that electrons are attracted to the positive ion crystal lattice. I know that, but the problem is why is that attraction so much greater than the repulsion from other free...
According to Helmholtz’s theorem, if electric charge density goes to to zero as r goes to infinity faster than 1/r^2 I'm able to construct an electrostatic potential function using the usual integral over the source, yet I don't understand how this applies to a chunk of charge in some region of...
Summary:: if Plate A had a potential of 9V, This means as We approach a unit charge from +Infinity to A we have to do this precise amount of work
Now we remove plate A, And replace it with plate B that has a potential of -9V Again that means to go from +Infinity To B we actually gain energy, or...
Homework Statement
a) State the boundary conditions for the electric field strength E and electric flux density D at a planar interface separating two media with dielectric constants ε1 and ε2.
b) A parallel plate capacitor with a plate separation d is filled with two layers of different...
Sorry if this has been answered already, i searched for a while. I know how to solve the problem of the potential of a point charge near a grounded infinite conducting plane, and a line charge near an infinite conducting plane. If the plane isn't necessarily grounded, say its at some potential...
Q) A conducting sphere of radius R floats half submerged in a liquid dielectric medium of permittivity e1. The region above the liquid is a gas of permittivity e2. The total free charge on the sphere is Q. Find a radial inverse-square electric field satisfying all boundary conditions and...
Homework Statement
We have a spehere of radius ##r_1## and on of ##r_2## far away from each other. The first sphere has a charge ##Q##. What is the change in electro static energy when they are connected together?
Homework Equations
Potential of a charged sphere: ## V = \frac{Q}{4\pi\epsilon_0...
Homework Statement
An object with charge +2.0×10−5 C is moved from position C to position D in the figure (Figure 1) . q1 = q3 = +10.0×10−5 C and q2 = −20.0×10−5 C. All four charged objects are the system.
Here's a picture to the problem
Homework Equations
$$ F = \frac {kq_1 q_2}{r^2} $$
$$...
Hey guys!
The question is related to problem 2.26 from Electrodynamics by Griffiths (3ed).
1. Homework Statement
A conical surface (an empty ice-cream cone) carries a uniform surface charge σ. The height of the cone is h, as the radius of the top. Find the potential difference between points a...
Homework Statement
A proton is composed of three quarks: two "up" quarks, each having charge +2e/3, and one "down" quark, having charge -e/3. Suppose that the three quarks are equidistant from one another. Take the distance to be 3×10-15 m and calculate the potential energy of the subsystem of...
Six mercury drops of equal size given potential of +3v and two other drops are given -3v potential. If they coalesce what is final potential
This question had been eating my brain i know solution if they are given same potential but what to do when they have different potential