Help about properties of Pell numbers

  • Thread starter T.Rex
  • Start date
  • #1
62
0
Hi, I need some help about properties of Pell numbers:

[tex] U_n = 2 U_{n-1} + U_{n-2} , \text{ with: } U_0=0 \text{
and: } U_1=1 [/tex]

[tex] V_n = 2 V_{n-1} + V_{n-2} , \text{ with: } V_0=2 \text{
and: } V_1=2 [/tex]


I have a proof for:

[tex]\frac{V_{\displaystyle 2^{\scriptstyle n}}}{2}
\ = \ 1 + 4 \prod_{i=0}^{n-2}V_{\displaystyle 2^{\scriptstyle
i}}^{\scriptstyle 2} \ \equiv \ 1 \pmod{2^{\scriptstyle 2n}} \
\text{\ \ \ \ (for } n \geq 2 )[/tex]

But I have no proof for C1:

[tex]\frac{V_{\displaystyle 2^{\scriptstyle n}+1}}{2}
\ \equiv \ 1 \pmod{2^{\scriptstyle n+1}} \ \text{\ \ \ \ (for
} n \geq 2 )[/tex]

and C2:

[tex]p,q \ \text{ odd primes }, \ \ p \mid V_{\displaystyle q} \ \ \Longrightarrow \ \ p \equiv 1 \pmod{2q}[/tex]

and C3:

[tex]p \ \text{ odd prime }, \ \ p \mid V_{\displaystyle 2^{\scriptstyle i}} \ \ \Longrightarrow \ \ p \equiv 1 \pmod{2^{\scriptstyle i+2}}[/tex]

and C4 (a guess):
[tex]p \ \text{ odd prime }, \ \ p \mid V_{\displaystyle 2^{\scriptstyle i}} \
\text{ and } \ p = 1 + {(2^{\scriptstyle i}\alpha)}^2 \ \
\Longrightarrow \ \ \alpha = \prod_{j=0}^{k} F_j \ \text{ or } \
\alpha = 1 [/tex].

Can you help ?
Thanks,

Tony
 

Answers and Replies

  • #2
62
0
Any idea ?

OK, I've got a proof for C1. It was not so difficult.

About C4, there was a mistake:
[tex]p \ \text{ odd prime }, \ \ p \mid V_{\displaystyle 2^{\scriptstyle n}} \
\text{ and } \ p = 1 + {(2^{\scriptstyle n}\alpha)}^2 \ \
\Longrightarrow \ \ \alpha = \prod_{j} F_j [/tex]
where [tex]F_j[/tex] are Fermat prime numbers.

Any idea ?
tony
 

Related Threads on Help about properties of Pell numbers

  • Last Post
Replies
1
Views
3K
  • Last Post
Replies
9
Views
4K
  • Last Post
Replies
6
Views
5K
Replies
5
Views
3K
Replies
14
Views
9K
  • Last Post
Replies
5
Views
3K
  • Last Post
Replies
6
Views
3K
  • Last Post
Replies
5
Views
2K
Replies
1
Views
2K
Top