yungman
- 5,741
- 294
This last part of the steps in proofing
V_{(\vec r, t)} = \frac 1 {4\pi \epsilon_0} \int_{v'} \frac {\rho _{(\vec r',t_r)} }{\eta} d\tau' \;\hbox { where } \;\eta=|\vec r -\vec r'|.
In the last step:
\nabla^2 V_{(\vec r , t) } = \frac 1 {4\pi \epsilon_0} \int_{v'} \left [ \frac 1 {c^2} \frac {\ddot{\rho} _{(\vec r',t_r)} }{\eta} - 4\pi \rho _{(\vec r',t_r)} \delta^3 (\vec {\eta}) \right ] d\tau' \;= \;\frac 1 {c^2} \frac {\partial^2 V_{(\vec r , t)}}{\partial t^2}\; - \;\frac {\rho_{(\vec r',t_r)} }{\epsilon_0}
My questions are:
1) How do I go from \frac 1 {4\pi \epsilon_0} \int_{v'} \frac 1 {c^2} \frac {\ddot{\rho} _{(\vec r',t_r)} }{\eta} d\tau' \;= \;\frac 1 {c^2} \frac {\partial^2 V_{(\vec r , t)}}{\partial t^2} ?
Only way I can come up with is:
V_{(\vec r, t)} = \frac 1 {4\pi \epsilon_0} \int_{v'} \frac {\rho _{(\vec r',t_r)} }{\eta} d\tau' \;\Rightarrow \; \frac {\partial^2 V_{(\vec r , t)}}{\partial t^2} = \frac 1 {4\pi \epsilon_0} \int_{v'} \frac {\ddot{\rho} _{(\vec r',t_r)} }{\eta} d\tau'
Does anyone have a better way to derive this?
2) I cannot verify the second part:
\frac 1 {4\pi \epsilon_0} \int_{v'} 4\pi \rho _{(\vec r',t_r)} \delta^3 (\vec {\eta}) \right ] d\tau' = \frac {\rho _{(\vec r',t_r)} }{\epsilon_0}
Notice \delta ^3(\eta)}? But the final part \;\frac {\rho _{(\vec r',t_r)} }{\epsilon_0} \; has no \eta in it?
Can anyone help?
thanks
V_{(\vec r, t)} = \frac 1 {4\pi \epsilon_0} \int_{v'} \frac {\rho _{(\vec r',t_r)} }{\eta} d\tau' \;\hbox { where } \;\eta=|\vec r -\vec r'|.
In the last step:
\nabla^2 V_{(\vec r , t) } = \frac 1 {4\pi \epsilon_0} \int_{v'} \left [ \frac 1 {c^2} \frac {\ddot{\rho} _{(\vec r',t_r)} }{\eta} - 4\pi \rho _{(\vec r',t_r)} \delta^3 (\vec {\eta}) \right ] d\tau' \;= \;\frac 1 {c^2} \frac {\partial^2 V_{(\vec r , t)}}{\partial t^2}\; - \;\frac {\rho_{(\vec r',t_r)} }{\epsilon_0}
My questions are:
1) How do I go from \frac 1 {4\pi \epsilon_0} \int_{v'} \frac 1 {c^2} \frac {\ddot{\rho} _{(\vec r',t_r)} }{\eta} d\tau' \;= \;\frac 1 {c^2} \frac {\partial^2 V_{(\vec r , t)}}{\partial t^2} ?
Only way I can come up with is:
V_{(\vec r, t)} = \frac 1 {4\pi \epsilon_0} \int_{v'} \frac {\rho _{(\vec r',t_r)} }{\eta} d\tau' \;\Rightarrow \; \frac {\partial^2 V_{(\vec r , t)}}{\partial t^2} = \frac 1 {4\pi \epsilon_0} \int_{v'} \frac {\ddot{\rho} _{(\vec r',t_r)} }{\eta} d\tau'
Does anyone have a better way to derive this?
2) I cannot verify the second part:
\frac 1 {4\pi \epsilon_0} \int_{v'} 4\pi \rho _{(\vec r',t_r)} \delta^3 (\vec {\eta}) \right ] d\tau' = \frac {\rho _{(\vec r',t_r)} }{\epsilon_0}
Notice \delta ^3(\eta)}? But the final part \;\frac {\rho _{(\vec r',t_r)} }{\epsilon_0} \; has no \eta in it?
Can anyone help?
thanks