Help please in understanding the limits of this integration

  • Thread starter Thread starter snatchingthepi
  • Start date Start date
  • Tags Tags
    Integration Limits
Click For Summary
The discussion centers on the confusion regarding the limits of integration for finding the volume above a cone and below a sphere. The user believes that integrating from sqrt(1/2) to 1 is correct for calculating the area above the cone and below the sphere, while the solution manual suggests using limits from 0 to sqrt(1/2). The user notes that the latter would yield the area above the plane projection of the sphere and below the cone, which seems incorrect. Additional input from other users indicates that using spherical coordinates may simplify the problem. The conversation highlights the importance of understanding the geometric relationships between the cone and sphere in setting appropriate integration limits.
snatchingthepi
Messages
145
Reaction score
37
Homework Statement
Finding the volume above the cone z = sqrt(x^2 = y^2) and below sphere x^2 + y^2 + z^2 = 1
Relevant Equations
Cone: z = sqrt(x^2 = y^2)

Sphere: x^2 + y^2 + z^2 = 1
So I can push this integral all the way to the end and see I get a negative volume.

I solve for the intercepts of the cone and sphere at r^2 = 1/2. Seeing this cone is inside the sphere and the sphere is around it, I figure I should integrate from sqrt(1/2) to 1 since we're dealing with a unit sphere, and these limits would give the area *above* the cone and *below* the sphere.

But when I check the solution manual I see the problem involves using radial limits from 0 to sqrt(1/2) but the equation that is integrated is exactly the same as mine. Using limits from 0 to root(1/2) would seem to me to give the area above the plane projection of the sphere and below the cone, not above the cone and below the sphere. Can someone help me understand where this is coming from?
 
Physics news on Phys.org
snatchingthepi said:
Problem Statement: Finding the volume above the cone z = sqrt(x^2 = y^2) and below sphere x^2 + y^2 + z^2 = 1
Relevant Equations: Cone: z = sqrt(x^2 = y^2)

Sphere: x^2 + y^2 + z^2 = 1

So I can push this integral all the way to the end and see I get a negative volume.

I solve for the intercepts of the cone and sphere at r^2 = 1/2. Seeing this cone is inside the sphere and the sphere is around it, I figure I should integrate from sqrt(1/2) to 1 since we're dealing with a unit sphere, and these limits would give the area *above* the cone and *below* the sphere.

But when I check the solution manual I see the problem involves using radial limits from 0 to sqrt(1/2) but the equation that is integrated is exactly the same as mine. Using limits from 0 to root(1/2) would seem to me to give the area above the plane projection of the sphere and below the cone, not above the cone and below the sphere. Can someone help me understand where this is coming from?
Can you show us the integral you're evaluating? Your description omits some details that would be helpful.
 
Does this plot help?
Untitled.png
 
245610


Here is my image of the integral I've computed. Barring an extra parentheses I've clearly dropped by accident at the end, I am trying to run it from sqrt(1/2) to 1. Looking at the graph above provided by vela (thank you) I see where everything intercepts, but I do not understand why the given solutions integrates from 0 to sqrt(1/2).

To get the area above the cone and below the sphere shouldn't I have to use limits of integration from sqrt(1/2) to 1?
 
First of all, this is (much) easier to do in spherical coordinates than in cylinder coordinates.

Second, in the region that is above the yellow line and below the blue line in #3, clearly the ##r##-value is lower than the ##r##-value at the intercept.
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K
Replies
5
Views
2K
Replies
6
Views
1K
Replies
24
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 21 ·
Replies
21
Views
3K
Replies
13
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K