Help understanding the Empirical Rule & Chebyshev Theory

  • Thread starter Thread starter iPhysicz
  • Start date Start date
  • Tags Tags
    Theory
iPhysicz
Messages
1
Reaction score
0
I'm having trouble distinguishing the similarities and the differences between the Empirical Rule and Chebyshev’s Theory. I'm a long time lurker here and figured this would be the place to ask. I understand that Chebyshev's Theory deals with real world distributions and Empirical Rule deals with normal distributions but I can't really distinguish what else to say about it... Please help thanks!
 
Physics news on Phys.org
You essentially nailed it. The Empirical Rule is simple a condensed set of 'rules' (guidelines would be a better term') about the approximate percentages that are found with 1, 2, and 3 standard deviations of the mean for a normal distribution. It is not a mathematical theorem.

Chebyshev's Theorem, on the other hand, IS a theorem - there is a proof of the result: the only requirement is that the distribution have a finite variance. Chebyshev's theorem holds for any distribution, symmetric or skewed. It's most important use (IMO) is not in data description but in more theoretical settings.
 
I just can't grasp how to figure out proportions of measurements below a certain number. For instance: Set data has mean of 75 and standard deviation of 5. No info about size of data set or shape of distribution (therefore use chebyshev's).
1. What can you say about proportions of measurements between 60 and 90. (I got 89%).
2. Between 65 and 85. ( I got 75%)
3. Above 90? This is where I get stuck! Can someone please help me?
 
Last edited:
lwerlinger said:
I just can't grasp how to figure out proportions of measurements below a certain number. For instance: Set data has mean of 75 and standard deviation of 5. No info about size of data set or shape of distribution (therefore use chebyshev's).
1. What can you say about proportions of measurements between 60 and 90. (I got 89%).
2. Between 65 and 85. ( I got 75%)
The only improvement I would make on these numbers is to say at least 89\% and at least 75\% - Chebyschev's Theorem gives a lower bound on the trapped percentages.
3. Above 90? This is where I get stuck! Can someone please help me?

Remember from part (1) of your question that at least 89\% of the scores are between 65 and 90. Since you can't assume anything about the shape of the distribution, the best you can say is this: we're still missing a maximum of 11\%
of the data. It's possible that all of it missing data is above 90, so the only conclusion to make is at most 11\% of the scores are above 90
 
ah ha. Well that seems almost to easy. Thanks statdad, I really appreciate the help!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top