A Help with 2nd Order Ricci: Indexes in GR

  • A
  • Thread starter Thread starter GrimGuy
  • Start date Start date
  • Tags Tags
    Gr Index Work
GrimGuy
Messages
11
Reaction score
2
In my studies trying to get the Ricci tensor of 2° order i stuck in this expression:
##h_{\mu}^{\ \sigma},_{\lambda}h_{\sigma}^{\ \lambda},_{\nu}=h_{\mu \lambda},^{\sigma}h_{\sigma}^{\ \lambda},_{\nu}##

So, to complete my calculations those quantities should be the same, but i don't understand what happens that make them equal. I don't know how to work with lowering an upering index to modify it.
 

Attachments

  • 1617138136858.png
    1617138136858.png
    691 bytes · Views: 172
Last edited:
Physics news on Phys.org
Welcome to PF. I've modified your LaTeX to fix the index placement - is this correct?$$h_{\mu}{}^{\sigma}{}_{,\lambda}
h_{\sigma}{}^{\lambda}{}_{,\nu}
=h_{\mu \lambda,}{}^{\sigma}
h_{\sigma}{}^{\lambda}{}_{,\nu}$$
(Edit: corrected above following correction of OP - see below). What's ##h## here? Is it a small deviation of the metric from flat? I.e. ##g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}##?
 
Last edited:
  • Like
Likes vanhees71 and etotheipi
On a second look, your free indices don't match. The left hand side has ##\mu## and ##\sigma## free and the right hand side has ##\mu## and ##\nu##. Have you made a transcription error? If not, your problems run deep. (Edit: now corrected.)
 
Last edited:
Ibix said:
Welcome to PF. I've modified your LaTeX to fix the index placement - is this correct?$$h_{\mu}{}^{\nu}{}_{,\lambda}
h_{\sigma}{}^{\lambda}{}_{,\nu}
=h_{\mu \lambda,}{}^{\sigma}
h_{\sigma}{}^{\lambda}{}_{,\nu}$$
What's ##h## here? Is it a small deviation of the metric from flat? I.e. ##g_{\mu\nu}=\eta_{\mu\nu}+h_{\mu\nu}##?

Ohhh, i realize i made a mistake (the first up ##\mu## is actually ##\sigma##), I edit myself to correct it.
Yes the ##h## is the small deviation of the flat space.
 
Ibix said:
On a second look, your free indices don't match. The left hand side has ##\mu## and ##\sigma## free and the right hand side has ##\mu## and ##\nu##. Have you made a transcription error? If not, your problems run deep.

A little transcription mistake, now it's in the correct form.
 
Right. Do you not just regard anything proportional to ##h## as small and anything proportional to ##(h)^2## as negligible? Or does the "second order" in your title mean you are keeping ##(h)^2## and neglecting ##(h)^3##?
 
Ibix said:
Right. Do you not just regard anything proportional to ##h## as small and anything proportional to ##(h)^2## as negligible? Or does the "second order" in your title mean you are keeping ##(h)^2## and neglecting ##(h)^3##?

Yeah, I'm keeping the ##(h)^2## and neglecting ##(h)^3##.
 
I'd suggest swapping the up/down ##\sigma##s so that your first ##h## is all lower on both sides, note that the second ##h## is the same on both sides, then think about what you sum over and see if any of the terms cancel. Write the summation out explicitly if you don't see it. 😁
 
@GrimGuy did you just want to show they're equal? If so, using ##\eta_{ab}## and ##\eta^{ab}## to raise and lower indices, you have$$
\begin{align*}

(\partial_{\lambda} {h_{\mu}}^{\sigma}) (\partial_{\nu} {h_{\sigma}}^{\lambda}) & = \eta^{\sigma \alpha} \eta_{\lambda \beta} (\partial^{\beta} h_{\mu \alpha})(\partial_{\nu} {h_{\sigma}}^{\lambda}) \\

&= (\partial^{\beta} h_{\mu \alpha}) (\partial_{\nu} {h^{\alpha}}_{\beta}) \\

&= (\partial^{\beta} h_{\mu \alpha}) (\partial_{\nu} {h_{\beta}}^{\alpha})\end{align*}
$$where we used the symmetry in ##h_{ab} = g_{ab} - \eta_{ab}##
 
Last edited by a moderator:
  • Like
Likes Ibix
  • #10
etotheipi said:
@GrimGuy did u just want to show they're equal? if so, using ##\eta_{ab}## and ##\eta^{ab}## to raise and lower indices, u have$$
\begin{align*}

(\partial_{\lambda} {h_{\mu}}^{\sigma}) (\partial_{\nu} {h_{\sigma}}^{\lambda}) & = \eta^{\sigma \alpha} \eta_{\lambda \beta} (\partial^{\beta} h_{\mu \alpha})(\partial_{\nu} {h_{\sigma}}^{\lambda}) \\

&= (\partial^{\beta} h_{\mu \alpha}) (\partial_{\nu} {h^{\alpha}}_{\beta}) \\

&= (\partial^{\beta} h_{\mu \alpha}) (\partial_{\nu} {h_{\beta}}^{\alpha})\end{align*}
$$where we used the symmetry in ##h_{ab} = g_{ab} - \eta_{ab}##

Nice approach, understood perfectly, except for the symmetry identity. I know it is symmetrical ##h##, but i can't put it in the calculus.
How can i explicitly the symmetry property in this solution.
 
  • #11
Ibix said:
I'd suggest swapping the up/down ##\sigma##s so that your first ##h## is all lower on both sides, note that the second ##h## is the same on both sides, then think about what you sum over and see if any of the terms cancel. Write the summation out explicitly if you don't see it. 😁

it worked, but it was hard work
 
  • #12
GrimGuy said:
Nice approach, understood perfectly, except for the symmetry identity. I know it is symmetrical ##h##, but i can't put it in the calculus.
How can i explicitly the symmetry property in this solution.

Come again; are you asking why ##h_{ab}## is symmetric? the difference between two symmetric tensors is symmetric, i.e. ##C_{ab} = A_{ab} - B_{ab} = A_{ba} - B_{ba} = C_{ba}##.
 
Last edited by a moderator:
  • #13
etotheipi said:
come again - are you asking why ##h_{ab}## is symmetric? the difference between two symmetric tensors is symmetric, i.e. ##C_{ab} = A_{ab} - B_{ab} = A_{ba} - B_{ba} = C_{ba}##

Yes, i 'm not sure how to explicit the symmetric property in that solution. Maybe i lack of information.
 
  • #14
##g## and ##\eta## are both symmetric, by the definition of a metric.
 
Last edited by a moderator:
  • Like
Likes GrimGuy
Back
Top