My question, because I keep seeing this on the internet, is that if S is a subset of R and Hausdorff dimension greater than 0, it is uncountable... is this true.(adsbygoogle = window.adsbygoogle || []).push({});

It seems not to be. If one were to modify the Cantor third set and remove some length of 1/n from the middle of the sets at each iteration, one would achieve a set with Hausdorff dimension: 2 = n^d => ln2/ln n =d, and as 1/n -> 1 , n -> infinity, and ln2/ln n -> 0. Yet the set is still uncountable.

Perhaps I have missed something, or perhaps most of the time the relationship holds. Does anyone know either way? or if there are only special cases where this happens, what they are?

Thanks,

jon

**Physics Forums - The Fusion of Science and Community**

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Help with hausdorff dimension and countableness.

Loading...

Similar Threads - Help hausdorff dimension | Date |
---|---|

B Need some help with understanding linear approximations | Feb 17, 2018 |

I Help with simplifying series of hyperbolic integrals | Nov 19, 2017 |

I Help with understanding inexact differential | Nov 13, 2017 |

I Help please with biocalculus question involving differentiation | Nov 4, 2017 |

Help with Hausdorff spaces | Mar 31, 2008 |

**Physics Forums - The Fusion of Science and Community**