hey pf!(adsbygoogle = window.adsbygoogle || []).push({});

i have a few question about the physical intuition for divergence, gradient, and curl. before asking, i'll define these as i have seen them (an intuitive definition).

[tex] \text{Divergence} \:\: \nabla \cdot \vec{v} \equiv \lim_{V \to 0} \frac{1}{V} \oint_A \hat{n} \cdot \vec{v} da [/tex]

[tex] \text{Curl} \:\: \nabla \times \vec{v} \equiv \lim_{V \to 0} \frac{1}{V} \oint_A \hat{n} \times \vec{v} da [/tex]

[tex] \text{Gradient} \:\: \nabla \vec{v} \equiv \lim_{V \to 0} \frac{1}{V} \oint_A \hat{n} \vec{v} da [/tex]

where ##V## is the volume, ##\vec{v}## is a vector field and the rest (i think) is evident.

as for the divergence, i understand that ##\hat{n} \cdot \vec{v} da## is a volumetric flow rate through a differential surface element. thus the integral is the total volumetric flow rate, and dividing by volume and the limit gives us a nice understanding that divergence is expansion/contraction of a vector field.

my understanding is predicated on the understanding of the dot product, namely ##\hat{n} \cdot \vec{v} da##. however, the curl uses a cross product. i understand a cross product to be a vector orthogonal to two given vectors. thus, ##\hat{n} \times \vec{v} da## seems to be some new vector in a field such that it is tangent to the surface at any point. if we add all these vectors ##\hat{n} \times \vec{v} da## up we should get some kind of body rotation about a point, which i think parallels the general understanding of curl.

however, what on earth do we do about the dyadic product ##\hat{n} \vec{v}## embedded in the definition of gradient? i really don't have a physical interpretation of what is happening here, and thus i really don't physically understand ##\nabla \vec{v}##.

please help!

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Help with intuition of divergence, gradient, and curl

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**