MHB Help with Quadratic Equations by completing the square

Maddsnicole
Messages
1
Reaction score
0
I understand how to solve these equations when the square is on this side of the equal sign: x2 + 8x + 7 = 27

But when the square is on the other side, I am thrown. Like this one...
x2 = 14x - 33

The solutions manual shows the next step as the following, but what do you do to get to this point?
x2 - 14x + 49 = -33 + 49
 
Mathematics news on Phys.org
We are given:

$$x^2=14x-33$$

Subtract through by $14x$:

$$x^2-14x=-33$$

Take the coefficient of the linear term which is -14, divide by 2 to get -7, then square to get 49, and so add 49 to both sides:

$$x^2-14x+49=-33+49$$

Does this make sense?
 
Maddsnicole said:
I understand how to solve these equations when the square is on this side of the equal sign: x2 + 8x + 7 = 27

But when the square is on the other side, I am thrown. Like this one...
x2 = 14x - 33

The solutions manual shows the next step as the following, but what do you do to get to this point?
x2 - 14x + 49 = -33 + 49

I would not have followed the solution manuals next step. From the question

x2 = 14x - 33

I would first move everything over to the left hand side (because this is where the x2 is).

When you do this the terms you move from one side to the other need to change signs (positive becomes negative, negative becomes positive) so you should get this:

x2 - 14x + 33 = 0

From here I would complete the square as normal.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top