I Hermitian Operator Proof - Question

Jd_duarte
Messages
3
Reaction score
0
Hi,

I am questioning about this specific proof -https://quantummechanics.ucsd.edu/ph130a/130_notes/node134.html.
Why to do this proof is needed to compute the complex conjugate of the expectation value of a physical variable? Why can't we just start with < H\psi \mid \psi > ?
 
Physics news on Phys.org
Jd_duarte said:
Hi,

I am questioning about this specific proof -https://quantummechanics.ucsd.edu/ph130a/130_notes/node134.html.
Why to do this proof is needed to compute the complex conjugate of the expectation value of a physical variable? Why can't we just start with < H\psi \mid \psi > ?

If that's a proof of anything, it escapes me.

Normally, one proves that the eigenvalues of a Hermitian operator are real and then attention is restricted to Hermitian operators for observables; even though there may be non-Hermitian operators with real eigenvalues.
 
  • Like
Likes Jd_duarte and dextercioby
Jd_duarte said:
Hi,

I am questioning about this specific proof -https://quantummechanics.ucsd.edu/ph130a/130_notes/node134.html.
Why to do this proof is needed to compute the complex conjugate of the expectation value of a physical variable? Why can't we just start with < H\psi \mid \psi > ?

Because you will need that result to prove that the eigenfunctions of an hermitian operator corresponding to different eigenvalues are orthogonal.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
I am reading WHAT IS A QUANTUM FIELD THEORY?" A First Introduction for Mathematicians. The author states (2.4 Finite versus Continuous Models) that the use of continuity causes the infinities in QFT: 'Mathematicians are trained to think of physical space as R3. But our continuous model of physical space as R3 is of course an idealization, both at the scale of the very large and at the scale of the very small. This idealization has proved to be very powerful, but in the case of Quantum...
Thread 'Lesser Green's function'
The lesser Green's function is defined as: $$G^{<}(t,t')=i\langle C_{\nu}^{\dagger}(t')C_{\nu}(t)\rangle=i\bra{n}C_{\nu}^{\dagger}(t')C_{\nu}(t)\ket{n}$$ where ##\ket{n}## is the many particle ground state. $$G^{<}(t,t')=i\bra{n}e^{iHt'}C_{\nu}^{\dagger}(0)e^{-iHt'}e^{iHt}C_{\nu}(0)e^{-iHt}\ket{n}$$ First consider the case t <t' Define, $$\ket{\alpha}=e^{-iH(t'-t)}C_{\nu}(0)e^{-iHt}\ket{n}$$ $$\ket{\beta}=C_{\nu}(0)e^{-iHt'}\ket{n}$$ $$G^{<}(t,t')=i\bra{\beta}\ket{\alpha}$$ ##\ket{\alpha}##...
Back
Top