High school inequality |(√(sinx)+1)^2−(√(sina)+1)^2|<b

Click For Summary
SUMMARY

The discussion centers on finding a positive constant \( c \) such that for all \( x \) in the interval \( (0, \frac{\pi}{2}) \) and \( |x-a| PREREQUISITES

  • Understanding of the Mean Value Theorem in calculus
  • Familiarity with trigonometric functions, specifically sine
  • Knowledge of limits and inequalities in mathematical analysis
  • Basic algebraic manipulation involving square roots
NEXT STEPS
  • Study the Mean Value Theorem and its applications in calculus
  • Explore inequalities involving trigonometric functions, particularly \( | \sin t | \leq | t | \)
  • Learn about the properties of limits and continuity in relation to trigonometric functions
  • Investigate the implications of using derivatives to estimate function behavior near specific points
USEFUL FOR

Students studying calculus, particularly those focusing on inequalities and the behavior of trigonometric functions, as well as educators looking for examples of applying the Mean Value Theorem in problem-solving.

solakis1
Messages
407
Reaction score
0
Given 0<a<π/2 , b>0 find a c>0 such that :

for all ,x : if 0<x<π/2 and |x-a|<c ,then $$|(\sqrt sinx +1)^2-(\sqrt sin a +1)^2|<b$$
 
Physics news on Phys.org
solakis said:
Given $0<a<\pi/2$, $b>0$, find a $c>0$ such that :

for all $x$ : if $0<x<\pi/2$ and $|x-a|<c $, then $$|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2|<b$$.
[sp]First step: $|\sin x - \sin a| < |x-a|$. That is essentially the Mean Value theorem, which says that $\sin x - \sin a = (x-a)\cos y$ for some $y$ between $a$ and $x$.

Next, $|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2| = |\sin x + 2\sqrt{\sin x} + 1 - (\sin a + 2\sqrt{\sin a} + 1)| = |(\sin x -\sin a) + 2(\sqrt{\sin x} - \sqrt{\sin a})| \leqslant |(\sin x -\sin a)| + 2|\sqrt{\sin x} - \sqrt{\sin a}|.$

To get an estimate for $\sqrt{\sin x} - \sqrt{\sin a}$, multiply top and bottom by $\sqrt{\sin x} + \sqrt{\sin a}$: $$\sqrt{\sin x} - \sqrt{\sin a} = \frac{(\sqrt{\sin x} - \sqrt{\sin a})(\sqrt{\sin x} + \sqrt{\sin a})}{\sqrt{\sin x} + \sqrt{\sin a}} = \frac{\sin x - \sin a}{\sqrt{\sin x} + \sqrt{\sin a}},$$ from which $$|\sqrt{\sin x} - \sqrt{\sin a}| < \frac{|x - a|}{ \sqrt{\sin a}}.$$

Then $$|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2| \leqslant |(\sin x -\sin a)| + 2|\sqrt{\sin x} - \sqrt{\sin a}| < |x-a|\left(1 + \frac1{ \sqrt{\sin a}}\right).$$

We want this to be less than $b$. So take $$c = \frac b{1 + \frac1{ \sqrt{\sin a}}}$$. Then $$|\sqrt{\sin x} - \sqrt{\sin a}| < |x-a|\left(1 + \frac1{ \sqrt{\sin a}}\right) < c\left(1 + \frac1{ \sqrt{\sin a}}\right) = b.$$
[/sp]
 
solakis said:
Given 0<a<π/2 , b>0 find a c>0 such that :

for all ,x : if 0<x<π/2 and |x-a|<c ,then $$|(\sqrt sinx +1)^2-(\sqrt sin a +1)^2|<b$$

Hi solakis,

Is this a question that you want help with or know the answer to already and want to challenge others? Either way is fine but if it's the former then I'll move the thread to a different part of the forum.
 
Jameson said:
Hi solakis,

Is this a question that you want help with or know the answer to already and want to challenge others? Either way is fine but if it's the former then I'll move the thread to a different part of the forum.
This is a challenge question
 
Opalg said:
[sp]First step: $|\sin x - \sin a| < |x-a|$. That is essentially the Mean Value theorem, which says that $\sin x - \sin a = (x-a)\cos y$ for some $y$ between $a$ and $x$.

Next, $|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2| = |\sin x + 2\sqrt{\sin x} + 1 - (\sin a + 2\sqrt{\sin a} + 1)| = |(\sin x -\sin a) + 2(\sqrt{\sin x} - \sqrt{\sin a})| \leqslant |(\sin x -\sin a)| + 2|\sqrt{\sin x} - \sqrt{\sin a}|.$

To get an estimate for $\sqrt{\sin x} - \sqrt{\sin a}$, multiply top and bottom by $\sqrt{\sin x} + \sqrt{\sin a}$: $$\sqrt{\sin x} - \sqrt{\sin a} = \frac{(\sqrt{\sin x} - \sqrt{\sin a})(\sqrt{\sin x} + \sqrt{\sin a})}{\sqrt{\sin x} + \sqrt{\sin a}} = \frac{\sin x - \sin a}{\sqrt{\sin x} + \sqrt{\sin a}},$$ from which $$|\sqrt{\sin x} - \sqrt{\sin a}| < \frac{|x - a|}{ \sqrt{\sin a}}.$$

Then $$|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2| \leqslant |(\sin x -\sin a)| + 2|\sqrt{\sin x} - \sqrt{\sin a}| < |x-a|\left(1 + \frac1{ \sqrt{\sin a}}\right).$$

We want this to be less than $b$. So take $$c = \frac b{1 + \frac1{ \sqrt{\sin a}}}$$. Then $$|\sqrt{\sin x} - \sqrt{\sin a}| < |x-a|\left(1 + \frac1{ \sqrt{\sin a}}\right) < c\left(1 + \frac1{ \sqrt{\sin a}}\right) = b.$$
[/sp]
[sp] This supose to be a high school inequality :

|sinx-sina|=$$2|cos\frac{x+a}{2}|.|sin\frac{x-a}{2}|
\leq 2|sin\frac{x-a}{2}|$$....because $$|cost|\leq 1\forall t$$$$\leq 2|\frac{x-a}{2}|=|x-a|$$...since $$|sint|\leq |t|\forall t$$.But i am wondering do they learn the inequality $$|sint|\leq | t|\forall t $$ at high school ?[/sp]
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
412
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 2 ·
Replies
2
Views
3K