High school inequality |(√(sinx)+1)^2−(√(sina)+1)^2|<b

Click For Summary

Discussion Overview

The discussion revolves around finding a positive constant \( c \) such that a specific inequality involving the sine function holds for values of \( x \) close to a given \( a \) within the interval \( (0, \pi/2) \). The context includes mathematical reasoning and exploration of inequalities relevant to high school mathematics.

Discussion Character

  • Mathematical reasoning
  • Homework-related
  • Conceptual clarification

Main Points Raised

  • Participants discuss the requirement to find \( c > 0 \) such that for all \( x \) in the interval \( (0, \pi/2) \) with \( |x-a| < c \), the inequality \( |(\sqrt{\sin x} + 1)^2 - (\sqrt{\sin a} + 1)^2| < b \) holds.
  • One participant applies the Mean Value Theorem to establish that \( |\sin x - \sin a| < |x-a| \) and explores the implications for the inequality.
  • Another participant elaborates on the steps to estimate \( |(\sqrt{\sin x} + 1)^2 - (\sqrt{\sin a} + 1)^2| \) and derives a bound involving \( |x-a| \) and \( \sqrt{\sin a} \).
  • There is a question raised about whether high school students learn the inequality \( |\sin t| \leq |t| \) for all \( t \), indicating a concern about the educational background relevant to the problem.

Areas of Agreement / Disagreement

Participants do not reach a consensus on whether high school students learn specific inequalities, and there is no agreement on the final approach to solving the inequality problem, as multiple perspectives and methods are presented.

Contextual Notes

Participants express uncertainty regarding the educational curriculum related to inequalities, and the discussion includes various assumptions about the properties of sine and cosine functions without resolving them.

solakis1
Messages
407
Reaction score
0
Given 0<a<π/2 , b>0 find a c>0 such that :

for all ,x : if 0<x<π/2 and |x-a|<c ,then $$|(\sqrt sinx +1)^2-(\sqrt sin a +1)^2|<b$$
 
Physics news on Phys.org
solakis said:
Given $0<a<\pi/2$, $b>0$, find a $c>0$ such that :

for all $x$ : if $0<x<\pi/2$ and $|x-a|<c $, then $$|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2|<b$$.
[sp]First step: $|\sin x - \sin a| < |x-a|$. That is essentially the Mean Value theorem, which says that $\sin x - \sin a = (x-a)\cos y$ for some $y$ between $a$ and $x$.

Next, $|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2| = |\sin x + 2\sqrt{\sin x} + 1 - (\sin a + 2\sqrt{\sin a} + 1)| = |(\sin x -\sin a) + 2(\sqrt{\sin x} - \sqrt{\sin a})| \leqslant |(\sin x -\sin a)| + 2|\sqrt{\sin x} - \sqrt{\sin a}|.$

To get an estimate for $\sqrt{\sin x} - \sqrt{\sin a}$, multiply top and bottom by $\sqrt{\sin x} + \sqrt{\sin a}$: $$\sqrt{\sin x} - \sqrt{\sin a} = \frac{(\sqrt{\sin x} - \sqrt{\sin a})(\sqrt{\sin x} + \sqrt{\sin a})}{\sqrt{\sin x} + \sqrt{\sin a}} = \frac{\sin x - \sin a}{\sqrt{\sin x} + \sqrt{\sin a}},$$ from which $$|\sqrt{\sin x} - \sqrt{\sin a}| < \frac{|x - a|}{ \sqrt{\sin a}}.$$

Then $$|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2| \leqslant |(\sin x -\sin a)| + 2|\sqrt{\sin x} - \sqrt{\sin a}| < |x-a|\left(1 + \frac1{ \sqrt{\sin a}}\right).$$

We want this to be less than $b$. So take $$c = \frac b{1 + \frac1{ \sqrt{\sin a}}}$$. Then $$|\sqrt{\sin x} - \sqrt{\sin a}| < |x-a|\left(1 + \frac1{ \sqrt{\sin a}}\right) < c\left(1 + \frac1{ \sqrt{\sin a}}\right) = b.$$
[/sp]
 
solakis said:
Given 0<a<π/2 , b>0 find a c>0 such that :

for all ,x : if 0<x<π/2 and |x-a|<c ,then $$|(\sqrt sinx +1)^2-(\sqrt sin a +1)^2|<b$$

Hi solakis,

Is this a question that you want help with or know the answer to already and want to challenge others? Either way is fine but if it's the former then I'll move the thread to a different part of the forum.
 
Jameson said:
Hi solakis,

Is this a question that you want help with or know the answer to already and want to challenge others? Either way is fine but if it's the former then I'll move the thread to a different part of the forum.
This is a challenge question
 
Opalg said:
[sp]First step: $|\sin x - \sin a| < |x-a|$. That is essentially the Mean Value theorem, which says that $\sin x - \sin a = (x-a)\cos y$ for some $y$ between $a$ and $x$.

Next, $|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2| = |\sin x + 2\sqrt{\sin x} + 1 - (\sin a + 2\sqrt{\sin a} + 1)| = |(\sin x -\sin a) + 2(\sqrt{\sin x} - \sqrt{\sin a})| \leqslant |(\sin x -\sin a)| + 2|\sqrt{\sin x} - \sqrt{\sin a}|.$

To get an estimate for $\sqrt{\sin x} - \sqrt{\sin a}$, multiply top and bottom by $\sqrt{\sin x} + \sqrt{\sin a}$: $$\sqrt{\sin x} - \sqrt{\sin a} = \frac{(\sqrt{\sin x} - \sqrt{\sin a})(\sqrt{\sin x} + \sqrt{\sin a})}{\sqrt{\sin x} + \sqrt{\sin a}} = \frac{\sin x - \sin a}{\sqrt{\sin x} + \sqrt{\sin a}},$$ from which $$|\sqrt{\sin x} - \sqrt{\sin a}| < \frac{|x - a|}{ \sqrt{\sin a}}.$$

Then $$|(\sqrt {\sin x} +1)^2-(\sqrt {\sin a} +1)^2| \leqslant |(\sin x -\sin a)| + 2|\sqrt{\sin x} - \sqrt{\sin a}| < |x-a|\left(1 + \frac1{ \sqrt{\sin a}}\right).$$

We want this to be less than $b$. So take $$c = \frac b{1 + \frac1{ \sqrt{\sin a}}}$$. Then $$|\sqrt{\sin x} - \sqrt{\sin a}| < |x-a|\left(1 + \frac1{ \sqrt{\sin a}}\right) < c\left(1 + \frac1{ \sqrt{\sin a}}\right) = b.$$
[/sp]
[sp] This supose to be a high school inequality :

|sinx-sina|=$$2|cos\frac{x+a}{2}|.|sin\frac{x-a}{2}|
\leq 2|sin\frac{x-a}{2}|$$....because $$|cost|\leq 1\forall t$$$$\leq 2|\frac{x-a}{2}|=|x-a|$$...since $$|sint|\leq |t|\forall t$$.But i am wondering do they learn the inequality $$|sint|\leq | t|\forall t $$ at high school ?[/sp]
 
Last edited:

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 7 ·
Replies
7
Views
543
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 27 ·
Replies
27
Views
2K