Homework Help: Quantum Information Theory 1

maomao
Messages
1
Reaction score
2
Homework Statement
Given a vector space ##X = \mathbb{C}^\Sigma##, with a standard basis ##\left\{ |a\rangle, a \in \Sigma \right\}##. Given two operators ##V, W \in \mathcal{L}(\mathcal{X})##, the Schur product of ##V## and ##W##, denoted by ##V \odot W \in \mathcal{L}(\mathcal{X})##, is defined as the operator whose components respect to the standard basis are:
##\langle a| V \odot W |b \rangle = \langle a| V |b \rangle \langle a| W |b\rangle , \forall a, b \in \Sigma##.
Given a positive semidefinite operator ##P \in \text{Pos}(\mathcal{X}) ##, the associated Schur superoperator to ##P##, denoted ##\Lambda_P \in \text{T}(\mathcal{X})##, is defined as ##\Lambda_P (X) = P \odot X, \forall X \in \mathcal{L}(\mathcal{X})##.
Prove that ##\Lambda_P (X) \in \text{CP}(\mathcal{X})##.
Relevant Equations
The relevant points I have to prove that a superoperator is completely positive (CP) ##\Phi \in \text{T}(\mathcal{X},\mathcal{Y})##, where ##\mathcal{X}## and ##\mathcal{Y}## are complex Euclidean spaces, are the following statements:
1. ##\Phi## is CP, e.g., ##\Phi \in \text{CP}(\mathcal{X}, \mathcal{Y})##.

2. ##\Phi \otimes \mathbb{I}_{\mathcal{L}(\mathcal{X})}## is positive.

3. ##J(\Phi) \in \text{Pos}(\mathcal{Y} \otimes \mathcal{X}) ##.

4. ##A_1, \cdots , A_N \in \mathcal{L}(\mathcal{X},\mathcal{Y})## exist so that,
## \Phi (X) = \sum_{k=1}^N A_k X A^{\dagger}_k , \forall X \in \mathcal{L}(\mathcal{X})##

5. Point 4. holds for ##N = \text{rank} [J( \Phi)]##.

6. There exists a complex Euclidean space ##\mathcal{Z}## and an operator ##A \in \mathcal{L}(\mathcal{X}, \mathcal{Y} \otimes \mathcal{Z})## such that:
## \Phi (X) = \text{Tr}_{\mathcal{Z}} (AXA^\dagger) , \forall X \in \mathcal{L}(\mathcal{X})##

7. Point 6. holds for ##\text{dim} \mathcal{Z} = \text{rank} [J(\Phi)]##.
I considered an operator ##X \in \mathcal{L}(\mathcal{X} \otimes \mathcal{K})##, that is positive, ##X \geq 0##. And I defined it as it follows:
##X = \sum_{i,j} a_{ij} ∣x_i \rangle \langle x_i ∣ \otimes ∣k_j \rangle \langle k_j∣ ##​
Where ##x_i## are basis for ##\mathcal{X}## and ##k_j## basis for ##\mathcal{Y}##. Then, we remember the Schur product for the operator: ##\Lambda_P (X) = P \odot X##.
Another important point is that a superoperator ##\Phi## preserves the trace: ##\text{Tr} [\Phi (X)] = \text{Tr} (X), \forall X \in \mathcal{L}(\mathcal{X})##, and since the trace is ##\text{Tr}(A) = \sum_i \langle i ∣ A ∣i \rangle##, then,

##\text{Tr} [\Phi (X)] = \text{Tr} [ P \odot X ] = \sum_k \langle k∣ P \odot X ∣k \rangle = \langle k∣ P ∣k \rangle \hspace{1mm} \sum_k \langle k∣ X ∣k \rangle##​

The sum in ##k## represents the Trace of ##X##, ##\text{Tr}(X)##, and this is why ##\langle k∣ P ∣k \rangle = 1##, but I am not sure how could this prove that ##\Lambda_P (X)## is CP.
I understand that, since X is semi-definite positive, ##\langle k∣ X ∣k \rangle \geq 0##. Then, if ##\langle k∣ P ∣k \rangle##, which I already said that it has to be equal to ##1## to hold the equality, is also non-negative, the product ##\langle k∣ P ∣k \rangle \langle k∣ X ∣k \rangle## will also be non-negative. Is this enough to prove that ##\Lambda_P (X) \geq 0##?
 
Last edited:
Thread 'Help with Time-Independent Perturbation Theory "Good" States Proof'
(Disclaimer: this is not a HW question. I am self-studying, and this felt like the type of question I've seen in this forum. If there is somewhere better for me to share this doubt, please let me know and I'll transfer it right away.) I am currently reviewing Chapter 7 of Introduction to QM by Griffiths. I have been stuck for an hour or so trying to understand the last paragraph of this proof (pls check the attached file). It claims that we can express Ψ_{γ}(0) as a linear combination of...
Back
Top