- 4,796
- 32
Hi everyone.
Take the open sets A=S^1 - N and B=S^1 - S, that is, the circle minus the north and south pole resp.. Noting that AnB=S^0 and that A and B are contractible, the Mayer-Vietoris sequence in reduced homology for this decomposition writes,
\ldots \rightarrow \widetilde{H}_n(\mathbb{S}^0)\rightarrow 0\oplus 0\rightarrow \widetilde{H}_n(\mathbb{S}^1)\rightarrow\widetilde{H}_{n-1}(\mathbb{S}^0)\rightarrow 0\oplus 0\rightarrow\ldots
But in reduced homology, \widetilde{H}_n(\mathbb{S}^0)=0 in all degree, so we conclude that \widetilde{H}_n(\mathbb{S}^1)=0 in all degrees.
But this is not so because \widetilde{H}_1(\mathbb{S}^1)=\mathbb{Z}.
So where am I mistaken in the above?
Take the open sets A=S^1 - N and B=S^1 - S, that is, the circle minus the north and south pole resp.. Noting that AnB=S^0 and that A and B are contractible, the Mayer-Vietoris sequence in reduced homology for this decomposition writes,
\ldots \rightarrow \widetilde{H}_n(\mathbb{S}^0)\rightarrow 0\oplus 0\rightarrow \widetilde{H}_n(\mathbb{S}^1)\rightarrow\widetilde{H}_{n-1}(\mathbb{S}^0)\rightarrow 0\oplus 0\rightarrow\ldots
But in reduced homology, \widetilde{H}_n(\mathbb{S}^0)=0 in all degree, so we conclude that \widetilde{H}_n(\mathbb{S}^1)=0 in all degrees.
But this is not so because \widetilde{H}_1(\mathbb{S}^1)=\mathbb{Z}.
So where am I mistaken in the above?