Horizontal asymptotes of a function

Click For Summary
The function f(x) = (2 + 4e^x)/(2 + e^x) is confirmed to be increasing for all x by analyzing its derivative, f'(x), which should be positive without any maximums or minimums. To find the horizontal asymptotes, the limits as x approaches positive and negative infinity must be evaluated, specifically lim x->∞ f(x) and lim x->-∞ f(x). The horizontal asymptote on the right side is determined to be y = 4, while the left side approaches y = 1. Proper manipulation of limits is crucial to avoid indeterminate forms when calculating these asymptotes.
Emethyst
Messages
117
Reaction score
0

Homework Statement


Consider the function f(x)=(2+4e^x)/(2+e^x). a) Show that f(x) is increasing for all x. b) Find the horizontal asymptote on the left and right side.


Homework Equations


Use of the lim x->oo to find HA's



The Attempt at a Solution


Seems like an easy question, but it's got me slighty confused. For a) I tried plugging in oo (refer to NOTE at the bottom) for x and solving it that way, but this comes out undefined. Would this be the correct answer or do I need to use another method to prove that f(x) is increasing for all x? For b) I don't know where to start, as I have no idea how to show it has two asymptotes. I was able to find one of the asymptotes (y=4) by factoring e^x out, cancelling it off and then placing in oo, but I don't know how to get the other HA of y=1. Any help would be greatly appreciated, thanks in advance.

NOTE: I used oo to represent infinity since latex wasn't working.
 
Physics news on Phys.org
You don't "plug" in infinity, you allow the function to go to an arbitrarily large number. As for the left side you do the same but negative

As for a) when a function increases for all 'x', that means no matter what number you plug in the resulting number is greater than the value of the function at x-1.

Think about:
What happens when you plug in negative numbers? what about positive numbers? Does the function still increase?
 
Think about the following quotients when N gets very large, say a billion or a quintillion (1018). What number is the quotient close to being (Ie., if you were using an 8-digit calculator, what would it display)?

1) N/N

2) (N + 1)/N (Your calculator doesn't have enough decimal digits to display both the leading 1 and the trailing 1 for 1/1018. What will it round off to?)

3) (N + 2)/N

4) (N + N)/N

5) N/(N + 1)

6) N/(N + N)

7) (N + 1)/(N + 2)

8) (2N + 2)/(N + 2)

9) (4N + 2)/(N + 2)

The last is pretty much what they mean when they say "let x approach infinity" in your problem. When they say this, simply let N be extremely large compared to the largest constant in the problem. You can make "extremely large" rigorous by going through the epsilon-delta method. Analysis lives on approximation (made rigorous by epsilon-delta arguments).
 
Last edited:
For a), to demonstrate that f(x) is an increasing function for all x, find f'(x) and look for any maximums or minimums; since f(x) should be increasing if you are asked to demonstrate this, there should be no maximums or minimums. Then take f'(c) for some c in the domain of f(x) and f'(x). If f'(c)>0, the function is increasing on all x.

To find the horizontal asymptotes, take lim_x>inf f(x) and lim_x>-inf f(x). Do not simply "plug" infinity into f(x); manipulate the limit in order to get an expression that does not result in an indeterminate form.
 
Thanks for all that help guys, I finally solved it and now it makes sense :smile:
 
Question: A clock's minute hand has length 4 and its hour hand has length 3. What is the distance between the tips at the moment when it is increasing most rapidly?(Putnam Exam Question) Answer: Making assumption that both the hands moves at constant angular velocities, the answer is ## \sqrt{7} .## But don't you think this assumption is somewhat doubtful and wrong?

Similar threads

  • · Replies 6 ·
Replies
6
Views
1K
Replies
11
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
862
  • · Replies 4 ·
Replies
4
Views
2K
Replies
8
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K