I How Are Statistical Tables Created?

  • I
  • Thread starter Thread starter JFS321
  • Start date Start date
  • Tags Tags
    Stats
AI Thread Summary
The discussion clarifies the relationship between the fixed mean and standard deviation values of 0 and 1 in statistical tables and the actual experimental values. It explains that the mean of the measurements is represented by ##\bar{x}## and the standard deviation by ##\sqrt{\overline{(x-\bar{x})^2}}##, indicating a transformation process to standardize data. The random variable ##T_{n-1}##, derived from the sample mean and standard deviation, is used for inference about the unknown population mean ##\mu##. This variable follows a distribution that can be explicitly calculated and approximated using Monte-Carlo simulations. Ultimately, confidence intervals for ##\mu## can be constructed based on the values from the t-table, which are crucial for statistical analysis.
JFS321
Messages
75
Reaction score
6
All,

https://jimgrange.wordpress.com/2015/12/05/statistics-tables-where-do-the-numbers-come-from/

This is a great post -- but I'm a little foggy on the sentence that says "...mean and standard deviation for each condition is fixed at 0 and 1." Can someone explain this in a slightly different way? How do these values relate to the actual experimental values (which would be able to take on an infinite number of values)?

Many, many thanks.
 
Physics news on Phys.org
JFS321 said:
How do these values relate to the actual experimental values
That's rather simple: instead of zero, the average of he measurements is ##\bar x## and instead of 1 the standard deviation is ##\sqrt{\;\overline {(x-\bar x)^2}} ##
So a shift over ##-\bar x## and a stretch by a factor ##1/\sqrt{\;\overline {(x-\bar x)^2}} ## give you the standard tabulated function.##\bar y ## is short for 'the average of ##y##'
 
0 and 1 represents the means AND the standard deviations, or just the standard deviations?
 
JFS321 said:
"...mean and standard deviation for each condition is fixed at 0 and 1."
Just add the word "respectively" to the end of the sentence. Does that help?
 
JFS321 said:
All,

https://jimgrange.wordpress.com/2015/12/05/statistics-tables-where-do-the-numbers-come-from/

This is a great post -- but I'm a little foggy on the sentence that says "...mean and standard deviation for each condition is fixed at 0 and 1." Can someone explain this in a slightly different way? How do these values relate to the actual experimental values (which would be able to take on an infinite number of values)?

Many, many thanks.

If you have a sample ##X_1, X_2, \ldots, X_n## of independent normal random variables, all with the same (unknown) mean ##\mu## and variance ##\sigma^2##, the sample mean
$$\bar{X} = \frac{1}{n} (X_1 + X_2 + \cdots + X_n)$$
has mean ##\mu## and variance ##\sigma^2/n##, or standard deviation ##\sigma/\sqrt{n}##. Thus, the random variable
$$ Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}} \hspace{2cm}(1)$$
is a standard normal random variable, with mean 0 and variance 1. However, we do not know ##\mu## or ##\sigma.## We can estimate ##\sigma## using the sample standard-deviation ##s_n,## where
$$s_n = \sqrt{ \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X})^2 } \hspace{2cm}(2)$$
If we substitute ##s_n## from (2) in place of ##\sigma## in (1) we obtain a new random variable
$$T_{n-1} = \frac{\bar{X} - \mu}{s_n / \sqrt{n}} \hspace{2cm}(3) $$
Here, we label ##T## with the index ##n-1## because the variance estimate ##s## in (2) has essentially used ##n-1## independent pieces of data to calculate ##s_n##. We say that ##n-1## is the number of "degrees of freedom".

This new random variable ##T_{n-1}## is not normally distributed anymore, but it has a distribution that can be calculated explicitly and --- as demonstrated in your cited link --- can be approximated through Monte-Carlo simulation methods.

The random variable ##T_{n-1}## has a symmetric distribution, so in a table it is enough to give values of ##t_\alpha(n-1)## that yield
$$P(T_{n-1} > t_\alpha(n-1)) = \alpha,$$
and typical tables do this for ##\alpha =0.10, 0.05, 0.02, 0.01## and maybe some others. Modern software such as EXCEL or free on-line sites such as Wolfram Alpha can give you values of ##t_\alpha(n-1)## for any specified ##n## and ##\alpha.##

You may notice that in (3) we still do not know ##\mu##, but that is OK: we use our t-table to make inferences about plausible values of ##\mu##. The reason we can do this is because we can re-write (3) as
$$\bar{X} - \mu = (s_n/\sqrt{n})\, T_{N-1} \Longrightarrow \mu = \bar{X} - (s_n/\sqrt{n})\, T_{n-1} \hspace{1cm}(4)$$
The probability that ##T_{n-1}## lies between ##-t_\alpha(n-1)## and ##+t_\alpha(n-1)## is ##1 - 2 \alpha##, so we can use (4) to construct a ##1-2\alpha## confidence interval for ##\mu## (meaning an interval that will contain the true value of ##\mu## in ##(1-2\alpha) \times 100 \%## of the cases.
 
Last edited:
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top