yuukichi
- 1
- 0
Hi guys, have been reading these forums for a very long time, have always found it very helpful and informative.
There's this problem which I can't seem to get my head around, it seems very straight forward, but every time I try to do it, I always end up doing it wrong. I would greatly appreciate it if anyone could point me in the right direction.
The problem is:
Dimensional analysis showed that the following relation describes the drag force F on an airplane
\frac{F}{\rho d^{2}u^{2}} = f\left(\frac{\mu}{\rho l u}\right)
Where u the airplane velocity, l is the characteristic length of the airplane, \rho is the surrounding air density and \mu is the viscosity of the air.
The drag on an airplane cruising at 390km/h in air at atmospheric pressure and temperature is to be determined from tests on a 1:10 scale model placed in a pressurised wind tunnel. To minimise compressibility effect the air speed in the wind tunnel is also to be 390km/h. Determine the air pressure in the wind tunnel, assuming the air temperature for the model and prototype.
I've tried separating F on the LHS by introducing a constant in the RHS, but that ends up totally wrong
Any help would be greatly appreciated!
Thanks :)
There's this problem which I can't seem to get my head around, it seems very straight forward, but every time I try to do it, I always end up doing it wrong. I would greatly appreciate it if anyone could point me in the right direction.
The problem is:
Dimensional analysis showed that the following relation describes the drag force F on an airplane
\frac{F}{\rho d^{2}u^{2}} = f\left(\frac{\mu}{\rho l u}\right)
Where u the airplane velocity, l is the characteristic length of the airplane, \rho is the surrounding air density and \mu is the viscosity of the air.
The drag on an airplane cruising at 390km/h in air at atmospheric pressure and temperature is to be determined from tests on a 1:10 scale model placed in a pressurised wind tunnel. To minimise compressibility effect the air speed in the wind tunnel is also to be 390km/h. Determine the air pressure in the wind tunnel, assuming the air temperature for the model and prototype.
I've tried separating F on the LHS by introducing a constant in the RHS, but that ends up totally wrong

Any help would be greatly appreciated!
Thanks :)