I How can I estimate the K force constant for bond types without special tools?

Lahearle
Messages
10
Reaction score
0
TL;DR Summary
Trying to find K constant of a single hydrogen and carbon atom
Hi I'm trying to throw together a cool chart, I need the K constant so I can divide K/U to get the CM-1 measurement of every element for every bond type.

I don't have any special tools for this, no force gauges. Does anyone have any idea how to at least roughly get an accurate depiction of this?

Was thinking an oldschool scale and dividing the mole by the size of an atom????

Or does anyone have a link to any charts that contain this???
 
Physics news on Phys.org
I have difficulty understanding what you are after and what you are seeking to do, but I think the following will help.

Go to https://webbook.nist.gov/chemistry/form-ser/, then enter the diatomic molecule you are after (CH), then on the page corresponding to the molecule click on Constants of diatomic molecules. Note that the results are in reverse order of energy, so the ground state is at the bottom of the table. For CH, you should find that the vibrational frequency, ##\omega_\mathrm{e}##, is 2858.5 (in units of cm-1).
 
  • Informative
  • Like
Likes Lahearle and berkeman
DrClaude said:
I have difficulty understanding what you are after and what you are seeking to do, but I think the following will help.

Go to https://webbook.nist.gov/chemistry/form-ser/, then enter the diatomic molecule you are after (CH), then on the page corresponding to the molecule click on Constants of diatomic molecules. Note that the results are in reverse order of energy, so the ground state is at the bottom of the table. For CH, you should find that the vibrational frequency, ##\omega_\mathrm{e}##, is 2858.5 (in units of cm-1).
That's exactly what I was looking for thanks
 
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Back
Top