- #1
_N3WTON_
- 351
- 3
Homework Statement
Evaluate the following double integral:
[itex] V = \int\int \frac{3y}{6x^{5}+1} \,dA[/itex]
[itex] D = [(x,y) \hspace{1 mm}|\hspace{1 mm} 0<=x<=1 \hspace{5 mm} 0<=y<=x^2] [/itex]
Homework Equations
The Attempt at a Solution
[itex] V = \int_{0}^{1} \int_{0}^{x^2} \frac{3y}{6x^{5}+1}\,dy\,dx [/itex]
[itex] = \frac{1}{2}\int_{0}^{1}\int_{0}^{x^2}\frac{y}{x^{5}+1}\,dy\,dx[/itex]
[itex] = \frac{1}{2}\int_{0}^{1}\int_{0}^{x^2}\frac{y^2}{2x^{5}+1}\,dx [/itex]
[itex] = \frac{1}{2}\int_{0}^{1}\frac{x^{4}}{2x^{5}+1}\,dx[/itex]
[itex] = \frac{1}{4}\int_{0}^{1}\frac{x^{4}}{x^{5}+1}\,dx[/itex]
To integrate, I made the following substitution:
[itex]u=x^{5}+1 [/itex]
[itex]du=5x^4[/itex]
Therefore, the new limits for integration are:
[itex] u=1[/itex]
[itex] u=2[/itex]
[itex] = \frac{1}{20}\int_{1}^{2}\frac{du}{u}[/itex]
[itex] = \frac{1}{20}[lnu] [/itex]
[itex] = \frac{1}{20}[ln2-ln1] [/itex]
This is my final (incorrect) answer:
[itex] \frac{ln2}{20} [/itex]
Obviously, I am making a mistake somewhere, but I can't see where so I thought a second (or third) set of eyes may help :) Thanks
Last edited: