How can I evaluate this double integral?

  • Thread starter _N3WTON_
  • Start date
  • Tags
    Integrals
In summary, by evaluating the given double integral using the given limits of integration, the result is a final answer of ln(7)/20.
  • #1
_N3WTON_
351
3

Homework Statement


Evaluate the following double integral:
[itex] V = \int\int \frac{3y}{6x^{5}+1} \,dA[/itex]
[itex] D = [(x,y) \hspace{1 mm}|\hspace{1 mm} 0<=x<=1 \hspace{5 mm} 0<=y<=x^2] [/itex]

Homework Equations

The Attempt at a Solution


[itex] V = \int_{0}^{1} \int_{0}^{x^2} \frac{3y}{6x^{5}+1}\,dy\,dx [/itex]
[itex] = \frac{1}{2}\int_{0}^{1}\int_{0}^{x^2}\frac{y}{x^{5}+1}\,dy\,dx[/itex]
[itex] = \frac{1}{2}\int_{0}^{1}\int_{0}^{x^2}\frac{y^2}{2x^{5}+1}\,dx [/itex]
[itex] = \frac{1}{2}\int_{0}^{1}\frac{x^{4}}{2x^{5}+1}\,dx[/itex]
[itex] = \frac{1}{4}\int_{0}^{1}\frac{x^{4}}{x^{5}+1}\,dx[/itex]
To integrate, I made the following substitution:
[itex]u=x^{5}+1 [/itex]
[itex]du=5x^4[/itex]
Therefore, the new limits for integration are:
[itex] u=1[/itex]
[itex] u=2[/itex]
[itex] = \frac{1}{20}\int_{1}^{2}\frac{du}{u}[/itex]
[itex] = \frac{1}{20}[lnu] [/itex]
[itex] = \frac{1}{20}[ln2-ln1] [/itex]
This is my final (incorrect) answer:
[itex] \frac{ln2}{20} [/itex]
Obviously, I am making a mistake somewhere, but I can't see where so I thought a second (or third) set of eyes may help :) Thanks
 
Last edited:
Physics news on Phys.org
  • #2
6x5-1 is not 6(x5-1)
 
  • #3
_N3WTON_ said:

Homework Statement


Evaluate the following double integral:
[itex] V = \int\int \frac{3y}{6x^{5}+1} \,dA[/itex]
[itex] D = [(x,y) \hspace{1 mm}|\hspace{1 mm} 0<=x<=1 \hspace{5 mm} 0<=y<=x^2] [/itex]

Homework Equations

The Attempt at a Solution


[itex] V = \int_{0}^{1} \int_{0}^{x^2} \frac{3y}{6x^{5}+1}\,dy\,dx [/itex]
[itex] = \frac{1}{2}\int_{0}^{1}\int_{0}^{x^2}\frac{y}{x^{5}+1}\,dy\,dx[/itex]
[itex] = \frac{1}{2}\int_{0}^{1}\int_{0}^{x^2}\frac{y^2}{2x^{5}+1}\,dx [/itex]

You need to learn how to use parentheses so that your algebra is correct:

[itex]\frac{y^2}{2x^{5}+1}[/itex] should be [itex]\frac{y^2}{2(x^{5}+1)}[/itex] after you integrate

[itex] = \frac{1}{2}\int_{0}^{1}\frac{x^{4}}{2x^{5}+1}\,dx[/itex]
[itex] = \frac{1}{4}\int_{0}^{1}\frac{x^{4}}{x^{5}+1}\,dx[/itex]
To integrate, I made the following substitution:
[itex]u=x^{5}+1 [/itex]
[itex]du=5x^4[/itex]
Therefore, the new limits for integration are:
[itex] u=1[/itex]
[itex] u=2[/itex]
[itex] = \frac{1}{20}\int_{1}^{2}\frac{du}{u}[/itex]
[itex] = \frac{1}{20}[lnu] [/itex]
[itex] = \frac{1}{20}[ln2-ln1] [/itex]
This is my final (incorrect) answer:
[itex] \frac{ln2}{20} [/itex]
Obviously, I am making a mistake somewhere, but I can't see where so I thought a second (or third) set of eyes may help :) Thanks
 
  • #4
ok, so then the answer will turn out to be:
[itex] \frac{ln7}{20} [/itex]
no?
thanks for the help :)
 
  • #5
Sorry I always forget to show my solution:
[itex] V = \int_{0}^{1} \frac{3}{6x^{5}+1}\frac{y^2}{2}\,dx[/itex]
[itex] = \frac{3}{2}\int_{0}^{1}\frac{x^4}{6x^{5}+1}\,dx[/itex]
[itex] u = 6x^{5}+1 \hspace{5 mm} du = 30x^4[/itex]
[itex] {when} \hspace{3 mm}x=0, \hspace{3 mm} u = 1 [/itex]
[itex] {when}\hspace{3 mm} x=1, \hspace{3 mm} u = 7 [/itex]
[itex] = \frac{1}{20}\int_{1}^{7}\frac{du}{u} [/itex]
[itex] = \frac{ln(7)}{20} [/itex]
 
  • #6
_N3WTON_ said:
ok, so then the answer will turn out to be:
[itex] \frac{ln7}{20} [/itex]
no?
thanks for the help :)

Seems ok to me.
 
  • #7
Dick said:
Seems ok to me.
thank you
 
  • #8
_N3WTON_ said:
Sorry I always forget to show my solution:
[itex] V = \int_{0}^{1} \frac{3}{6x^{5}+1}\frac{y^2}{2}\,dx[/itex]
[itex] = \frac{3}{2}\int_{0}^{1}\frac{x^4}{6x^{5}+1}\,dx[/itex]
[itex] u = 6x^{5}+1 \hspace{5 mm} du = 30x^4[/itex]
Your final answer is correct but [itex]du= 30x^4 dx[/itex] so [itex](1/30)du= x^4 dx[/itex]

[itex] {when} \hspace{3 mm}x=0, \hspace{3 mm} u = 1 [/itex]
[itex] {when}\hspace{3 mm} x=1, \hspace{3 mm} u = 7 [/itex]
[itex] = \frac{1}{20}\int_{1}^{7}\frac{du}{u} [/itex]
[itex] = \frac{ln(7)}{20} [/itex]
 
Back
Top