How Can I Improve My Approach to Solving Dynamics Problems?

  • Thread starter Thread starter HWGXX7
  • Start date Start date
  • Tags Tags
    Dynamics Particle
AI Thread Summary
The discussion focuses on improving problem-solving approaches for dynamics problems, particularly involving multiple particles and pulleys. Key issues identified include the need to account for the acceleration of the entire subsystem, which affects the tension in the ropes and the forces acting on each particle. The correct relationship between the effective gravitational acceleration and the acceleration of the subsystem is emphasized, clarifying that the net acceleration of particle B must consider the downward acceleration of the pulley. Participants highlight the importance of maintaining symbolic representations to minimize rounding errors during calculations. Overall, the conversation underscores the complexity of dynamics problems and the necessity of careful consideration of all forces and accelerations involved.
HWGXX7
Messages
46
Reaction score
0

Homework Statement


Untitled.png



Homework Equations



I converted the given data to SI units, because of my native calculation system.
I used an index for particles and named rope force BC: T_{BC}

The Attempt at a Solution



Kinematic expression for particle B:
a=constant=1,22 \frac{m}{s^{2}}
v=a.t
x(2)=a.\frac{t^{2}}{2}=2,44 m

Dynamic expression for particle B:
m_{B}.a_{B}=44,5+P-T_{BC} => 4,54 kg.1,22\frac{m}{s^{2}}= 44,5+P-T_{BC}

Finding unknown rope force BC form dynamic expression of particle C:
Acceleration of particle C is the same as particle B
-5,54=44,5-T_{BC}
T_{BC}=-50,.04N

Apply this in equation for particle B gives: 5,54=44,5+P-50,04 => P=11,08N

(Correct) solution has to be: 7,37 N

What did I do wrong?
 
Physics news on Phys.org
Notice that your solution doesn't include any effects from body A. That should make you suspicious :wink:

If pulley D accelerates downwards (as body A accelerates upwards), then this will affect the tension you find. If the pulley is accelerating downward then the whole "subsystem" consisting of the pulley with body B and body C will share the same net acceleration. One effect of this will be to reduce the effective gravitational acceleration acting on B and C. If we call the downward acceleration of the pulley A1, then the effective gravitational acceleration operating on B and C will be g - A1.
 
I reviewed the problem and came to follow set of equations:

Subsystem with particle B and C (and the pully) has an acceleration a_{1}
Newton second law:
+9,08.a_{1}=+P+89-T_{AD}

Particle A move with same acceleration upward, Newton second law:
-9,08.a_{1}=+89-T_{AD}

Substituting the equations gives me: 2.T_{AD}=178+P

(This gives the correct answers)

Now I do have to find a relation between the acceleration of the subsystem and particle B.
I know that the effective acceleration of particle B is:1,22 m/s^{2}.
But I don't understand why a_{1} equals 9,81 m/s^{2}-1,22m/s^{2}



Could you explain this to me?
 
HWGXX7 said:
I reviewed the problem and came to follow set of equations:

Subsystem with particle B and C (and the pully) has an acceleration a_{1}
Newton second law:
+9,08.a_{1}=+P+89-T_{AD}

Particle A move with same acceleration upward, Newton second law:
-9,08.a_{1}=+89-T_{AD}

Substituting the equations gives me: 2.T_{AD}=178+P

(This gives the correct answers)

Now I do have to find a relation between the acceleration of the subsystem and particle B.
I know that the effective acceleration of particle B is:1,22 m/s^{2}.
But I don't understand why a_{1} equals 9,81 m/s^{2}-1,22m/s^{2}



Could you explain this to me?

I don't think I can explain it, because I don't think that it's true if I'm correctly understanding that "9,81" is g and "1,22" is the net acceleration of block B :smile:

I believe that the acceleration a1 of the subsystem as a whole (and hence block A also) should be closer to 0.4 m/s2.

What sort of "relation between the acceleration of the subsystem and particle B" are you looking for and why? Didn't already solve for force P?
 
Here are my usefull equation to solve problem:
2.T_{AD}=178+P
9,08.a_{1}=P+89-T_{AD}
The acceleration of particle B consist of 2 components:
a_{1}=a_{pully}
a_{Beffectif}=1,22 m/s^{2}=a_{1}+a_{particle B}
m_{particle B}.a_{particle B}=P+44,5-T_{BC}

Particle C will accelerat upwards because of force P and the subsystem will move down.

With this configuration I still cannot solve it..

By the way the solution you proposed is indeed correct.

grtz
 
Oke, I think I got the correct appoarch with the relevant assumptions according to the kinematics. It was actualy a bit more tricky than just putting in some variabeles.

I will write the solution-equation in the assumption the system is moving:

- particle A: -m_{A}.a_{A}=F_{g,A}-T_{AD}
- subsystem (containing pully D en particle B and C): +(m_{B}+m_{C}).a_{A}-T_{AD}+P

This lead to: 178-2.T_{AD}+P=0
18,14.a_{A}=P

Now the tricky part I first looked over: the given kinematic expression of particle B is abolute. This means that: 1,44m/s^{2}=a_{B/D}+a_{D}

For particle C:a_{C}=a_{D}-a_{C/D}
a_{C/D}=a_{D}-a_{C}

We know that: a_{C/D}=a_{B/D}
The dynamics of particle C: a_{C}.m_{C}=+44,5-T_{BC}
T_{BC}=44,5+m_{A}.(a_{D}-a_{C/D})
So now I can write rope force BC as function of acceleration:
T_{BC}=44,5+m_{A}.(a_{D}-a_{A/D})


The dynamics of particel B: m_{B}.a_{B}=+P+44,5-T_{BC}=6,5N
m_{B}.a_{B}=+18,14.a_{A}+44,5-T_{BC}=6,5N
m_{B}.a_{B}=+18,14.(1,44-a_{B/D})+44,5-T_{BC}=6,5N


Putting this all together get's me: a_{D}=0,479 m/s^{2}

Still a bit incorrect, but more important to me is the method. So my final question are the assumptions I used correct?

grtz
 
Your assumptions and approach look okay to me.

Personally, I like to leave everything in symbolic form for as long as possible in order to avoid having to "carry around" a lot of numbers through a derivation and to avoid accumulating rounding errors.
 
Personally, I like to leave everything in symbolic form for as long as possible in order to avoid having to "carry around" a lot of numbers through a derivation and to avoid accumulating rounding errors.

Indeed, but I wanted to make it clear that I got the good approach. So with a couple of number it's more easily.

Offcourse the errors occurred at my final solution is due to the fact of rounding solution at the steps I took.

thank for all the help!
 
Back
Top