How Can I Solve This PDE Using Characteristics?

  • Thread starter Thread starter climbon
  • Start date Start date
  • Tags Tags
    Pde
climbon
Messages
16
Reaction score
0
Hi,

i'm having trouble finding a solution to this PDE,

\frac{d U(x,y,t)}{dt} = A(x) \frac{\partial U(x,y,t)}{\partial y} + B(y) \frac{\partial U(x,y,t)}{\partial x}

with only knowledge of the initial condition U(x,y,0)=F(x,y).

I've tried to solve this using characteristics but the only examples i can find in books is for the case when the left hand side is zero. Tried following the method from some books but can only solve it for when the L.H.S is zero. I'm not sure where to go next

Any help would be fantastic.

Thanks.
 
Physics news on Phys.org
For the LHS do you mean:
<br /> \frac{\partial U}{\partial t}<br />
 
climbon said:
Hi,

i'm having trouble finding a solution to this PDE,

\frac{d U(x,y,t)}{dt} = A(x) \frac{\partial U(x,y,t)}{\partial y} + B(y) \frac{\partial U(x,y,t)}{\partial x}

with only knowledge of the initial condition U(x,y,0)=F(x,y).

I've tried to solve this using characteristics but the only examples i can find in books is for the case when the left hand side is zero. Tried following the method from some books but can only solve it for when the L.H.S is zero. I'm not sure where to go next

Any help would be fantastic.

Thanks.
The LHS should read ∂U(x,y,t)/∂t not dU(x,y,t)/dt.

Then, for (parameter) s∈I⊂ℝ:

d/ds[U(x(s),y(s),t(s))]= ∂U/∂x·dx/ds + ∂U/∂y·dy/ds + ∂U/∂t·dt/ds≡ B(y)∂U/∂x + A(x)∂U/∂y - ∂U/∂t= 0.

You seek, U(x(s),y(s),t(s))= constant.

ADDENDUM:
Hint: dx/B = dy/A = dt/-1.
 
Last edited:
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...

Similar threads

Back
Top