- #1
confused_man
- 16
- 1
My understanding is that you can describe the complicated motion of atoms in a crystal as a sum of standing waves (normal modes). A phonon is an excitation of a normal mode in the sense that it increases the vibration amplitude of that normal mode and the energy of that mode by a quantized amount ##\hbar\omega## (here ##\omega## is the vibration frequency of the normal mode).
That makes perfect sense to me until people start describing phonons as being "particles" that can propagate through the crystal. Aren't phonons existing in all parts of the crystal at once given that they are excitation of these normal modes? At this point people usually wave their hands and invoke the wave-particle duality to say that phonons can behave as particles too. This isn't very satisfying to me.
Does anyone have a good conceptual explanation of how you can define phonons as particles that propagate? What does that actually look like in practice? Is it simply that we can also describe crystal vibrations using a different set of basis functions like traveling waves instead of standing waves, and then define a phonon as a wavepacket made from the standing waves?
That makes perfect sense to me until people start describing phonons as being "particles" that can propagate through the crystal. Aren't phonons existing in all parts of the crystal at once given that they are excitation of these normal modes? At this point people usually wave their hands and invoke the wave-particle duality to say that phonons can behave as particles too. This isn't very satisfying to me.
Does anyone have a good conceptual explanation of how you can define phonons as particles that propagate? What does that actually look like in practice? Is it simply that we can also describe crystal vibrations using a different set of basis functions like traveling waves instead of standing waves, and then define a phonon as a wavepacket made from the standing waves?