Zaare
- 54
- 0
I'm having trouble understanding how to find an expression for \pi(x) and \pi(y) in the relation:
<br /> \alpha \left( {x,y} \right) = \min \left( {1,\frac{{\pi \left( y \right)q\left( {y,x} \right)}}{{\pi \left( x \right)q\left( {x,y} \right)}}} \right)<br />
For example, If I want to simulate Normal Distribution (Expectation value m and standard deviation s), how can I find expressions for \pi(x) and \pi(y)? Or are they equal: \pi(x)=\pi(y)?
<br /> \alpha \left( {x,y} \right) = \min \left( {1,\frac{{\pi \left( y \right)q\left( {y,x} \right)}}{{\pi \left( x \right)q\left( {x,y} \right)}}} \right)<br />
For example, If I want to simulate Normal Distribution (Expectation value m and standard deviation s), how can I find expressions for \pi(x) and \pi(y)? Or are they equal: \pi(x)=\pi(y)?