juaninf
- 27
- 0
Please anyone help me with stability proof this next numerical method \dfrac{u^{n+1} - u^{n}}{\vartriangle t} = (u^{n+1}u^n)I am trying make :
<br /> \begin{equation*}<br /> \begin{split}<br /> u_2^{n+1} - u_1^{n+1} & = \displaystyle\frac{u_2^{n}}{1-\vartriangle tu_2^{n}} - \displaystyle\frac{u_1^{n}}{1-\vartriangle tu_1^{n}} \\<br /> & = \displaystyle\frac{u_2^{n}-u_1^{n}}{(1-\vartriangle tu_1^{n})(1-\vartriangle tu_2^{n})}\\<br /> & \geq{\displaystyle\frac{u_2^{n}-u_1^{n}}{e^{-\vartriangle t(u_2^{n}+u_1^{n})}}}\\<br /> \end{split}<br /> \end{equation*}<br />
but I not have more idea :( please help me
<br /> \begin{equation*}<br /> \begin{split}<br /> u_2^{n+1} - u_1^{n+1} & = \displaystyle\frac{u_2^{n}}{1-\vartriangle tu_2^{n}} - \displaystyle\frac{u_1^{n}}{1-\vartriangle tu_1^{n}} \\<br /> & = \displaystyle\frac{u_2^{n}-u_1^{n}}{(1-\vartriangle tu_1^{n})(1-\vartriangle tu_2^{n})}\\<br /> & \geq{\displaystyle\frac{u_2^{n}-u_1^{n}}{e^{-\vartriangle t(u_2^{n}+u_1^{n})}}}\\<br /> \end{split}<br /> \end{equation*}<br />
but I not have more idea :( please help me
Last edited: