MHB How Can We Find the Minimum 2-Norm of Ax-y Using an Orthogonal Matrix?

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Minimum
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

Let $A = QR$, where $Q$ is an orthogonal ($m\times m$)−matrix and $R$ is an upper ($m\times n$)-triangular matrix of rang $n$ ($m>n$).

I want to show that $$\min_{x\in \mathbb{R}^n}\|Ax-y\|_2=\|(Q^Ty)_{n+1}^m\|_2, \ \forall y\in \mathbb{R}^m$$

It is $(a)_k^l=(a_k, \ldots , a_l)^T$ if $a=(a_1, \ldots , a_l)^T\in \mathbb{R}^l$.
I have done the following:

\begin{align*}\min_{x\in \mathbb{R}^n}\|Ax-y\|_2&=\min_{x\in \mathbb{R}^n}\|QRx-y\|_2=\min_{x\in \mathbb{R}^n}\|QRx-QQ^{-1}y\|_2 \\ & =\min_{x\in \mathbb{R}^n}\|Q(Rx-Q^{T}y)\|_2=\min_{x\in \mathbb{R}^n}\|Rx-Q^{T}y\|_2\end{align*}

(We have used here the properties of an orthogonal matrix.)

How could we continue? How can we find that minimum? (Wondering)
 
Mathematics news on Phys.org
Hey mathmari!

We can write $Rx$ as $\binom U0x$ where $U$ is an up upper triangular nxn matrix of rank n, and 0 is a zero matrix, can't we? (Wondering)
It means that:
$$\|Rx-Q^{T}y\|^2
= \|Ux-(Q^{T}y)_1^n\|^2 + \|0-(Q^{T}y)_{n+1}^m\|^2
$$
Can we solve it now? (Wondering)
 
I like Serena said:
Hey mathmari!

We can write $Rx$ as $\binom U0x$ where $U$ is an up upper triangular nxn matrix of rank n, and 0 is a zero matrix, can't we? (Wondering)
It means that:
$$\|Rx-Q^{T}y\|^2
= \|Ux-(Q^{T}y)_1^n\|^2 + \|0-(Q^{T}y)_{n+1}^m\|^2
$$
Can we solve it now? (Wondering)

Ah ok! We have that \begin{align*}\|Rx-Q^{T}y\|_2^2&=\left \|\begin{pmatrix}U \\ 0\end{pmatrix}x-\begin{pmatrix}(Q^T)_1^n \\ (Q^T)_{n+1}^m\end{pmatrix}y\right \|_2^2 =\left \|\begin{pmatrix}Ux-(Q^Ty)_1^n \\ 0-(Q^Ty)_{n+1}^m\end{pmatrix}\right \|_2^2 \\ & =\|Ux-(Q^{T}y)_1^n\|_2^2 + \|(Q^{T}y)_{n+1}^m\|_2^2\end{align*}

Therefore, we get $$\min_{x\in\mathbb{R}^n}\|Rx-Q^{T}y\|^2=\min_{x\in\mathbb{R}^n}\{\|Ux-(Q^{T}y)_1^n\|_2^2 + \|(Q^{T}y)_{n+1}^m\|_2^2\}$$

This is minimized for that $x$ for which it holds $Ux=(Q^{T}y)_1^n$ and so we get $$\min_{x\in \mathbb{R}^n}\|Ax-y\|_2^2=\|(Q^{T}y)_{n+1}^m\|_2^2\Rightarrow \min_{x\in \mathbb{R}^n}\|Ax-y\|_2=\|(Q^{T}y)_{n+1}^m\|_2$$ right? (Wondering)
 
Yep.
And that is possible because $R$ is of rank $n$, and therefore $U$ is as well, making it an invertible matrix. (Nod)
 
I like Serena said:
And that is possible because $R$ is of rank $n$, and therefore $U$ is as well, making it an invertible matrix. (Nod)

Ok! Thanks a lot! (Yes)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
12
Views
2K
Replies
5
Views
2K
Replies
9
Views
3K
Replies
24
Views
4K
Replies
2
Views
2K
Replies
1
Views
2K
Back
Top