How can we solve a!b! = a! + b! + c^2 for positive integers a, b, and c?

msudidi
Messages
2
Reaction score
0
Given that a, b, and c are positive integers solve the following equation.

a!b! = a! + b! + c^2

anyone?
 
Mathematics news on Phys.org
I found the answer through brute force: a=2, b=3, c=2.

Not sure if there is a more elegant solution though.
 
vorde, thanks for trying, I am getting the same answer too:smile:

but I'm seeking for method to solve it: how to relate multiplication of 2 factorials and their sums? if we can, then c wouldn't be a problem.

there should be a way to solve it:rolleyes:
 
"Brute force" is a method! Please clarify what you are looking for.
 
msudidi said:
Given that a, b, and c are positive integers solve the following equation.

a!b! = a! + b! + c^2

anyone?

Doesn't it work for all positive integers c such that c = \sqrt{a!b! -a! -b!}? :biggrin:

Spit-balling here, we have a!b! = a! + b! + c^2? Doesn't that imply that \displaystyle a! = 1 + \frac{a! + c^2}{b!} = 1 + \frac{a(a-1)(a-2)(a-3)...}{b(b-1)(b-2)...} + \frac{c^2}{b!} = 1 + \prod_{k = (b+1)}^a k + \frac{c^2}{b!}. Don't know where I'm going with that...
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.

Similar threads

Replies
1
Views
1K
Replies
1
Views
1K
Replies
1
Views
1K
Replies
2
Views
1K
Replies
11
Views
2K
Replies
4
Views
1K
Back
Top