MHB How Can You Calculate the Area of a Triangle in an Orthogonal Coordinate System?

  • Thread starter Thread starter Petrus
  • Start date Start date
  • Tags Tags
    Area Triangle
Click For Summary
To calculate the area of a triangle in an orthogonal coordinate system with vertices at (-4,1), (1,4), and (-5,10), several methods can be employed. One effective approach involves using the vector cross product to find the area of the corresponding parallelogram and then dividing by two. Alternatively, the area can also be determined using a formula specifically designed for triangles formed by three points in a plane. For those seeking a more traditional method, calculating the lengths of each side and applying Heron's Formula is another viable option. These methods provide various ways to accurately determine the area of the triangle.
Petrus
Messages
702
Reaction score
0
In an orthogonal cordinate system determine the area of the triangle with vertices in $$(-4,1)$$, $$(1,4)$$ and $$(-5,10)$$ There is prob many way to solve it so go ahead with your method:) I made a hint for vector method.
Hint
The area of a triangle is half of the area of parallelogram
 
Mathematics news on Phys.org
Re: Area

The vector cross product, I believe (or the magnitude thereof) gives the area of the corresponding parallelogram. Hence, divide by two to get the answer. I get
$$[ \langle -4,1,0 \rangle- \langle 1,4,0 \rangle] \times [ \langle -4,1,0 \rangle- \langle -5,10,0 \rangle]= \langle -5,-3,0 \rangle \times \langle 1,-9,0 \rangle$$
$$= \left| \begin{matrix} \hat{i} & \hat{j} & \hat{k}\\ -5 &-3 &0 \\ 1 &-9 &0\end{matrix} \right| = \hat{k}((-5)(-9)-(-3)(1))= \hat{k}(45+3)=48 \hat{k}.$$
Hence, the area of the triangle is $24$ units squared.
 
Re: Area

Using the formula I developed http://www.mathhelpboards.com/f49/finding-area-triangle-formed-3-points-plane-2954/, we find:

$$A=\frac{1}{2}|(-5+4)(4-1)-(1+4)(10-1)|=\frac{48}{2}=24$$
 
Re: Area

Petrus said:
In an orthogonal cordinate system determine the area of the triangle with vertices in $$(-4,1)$$, $$(1,4)$$ and $$(-5,10)$$ There is prob many way to solve it so go ahead with your method:) I made a hint for vector method.
Hint
The area of a triangle is half of the area of parallelogram

If you get really desperate, you could work out the length of each side of the triangle by evaluating the distance between each set of points, and then use Heron's Formula.
 
Re: Area

The good old fashion method. The slope between the points (-4,1) and (1,4) is $$\frac{3}{5}. $$So the slope of a line perpendicular to it is $$-\frac{5}{3}$$This gives the two equations $$y-1=\frac{3}{5}(x+4)$$ the equation of the line perpendicular is $$y-10=-\frac{5}{3}(x+5)$$ Solving the system for the point of intersection gives $$\left(-\frac{13}{17},\frac{50}{17} \right)$$ The length of each line segment can now be calculated $$b=\int_{-4}^{1}\sqrt{1+(\frac{3}{5})^2}dx=\frac{24}{17} \sqrt{34}\\ h=\int_{-5}^{-\frac{13}{17}}\sqrt{1+(-\frac{5}{3})^2}dx=\sqrt{34}\\$$ This gives the area of the triangle $$A=\frac{1}{2}bh=24$$
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...