MHB How Can You Minimize This Complex Square Root Expression for Positive x and y?

  • Thread starter Thread starter anemone
  • Start date Start date
AI Thread Summary
The discussion focuses on minimizing the complex square root expression involving variables x and y. Participants share their approaches, with one user noting that their method was lengthy and similar to another's. Despite hopes for a shortcut, they found that a comprehensive solution was necessary. The conversation highlights the challenge of the problem and the effort required to arrive at the answer. Overall, the complexity of the expression demands thorough analysis and calculation.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Here is this week's POTW:

-----
Minimize $\sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$ for positive $x$ and $y$.

-----

 
Physics news on Phys.org
Is 13 correct?
 
  • Like
Likes anemone
malawi_glenn said:
Is 13 correct?
Yes!
 
anemone said:
Yes!
Ok, will try to type my solution. It is not short...
 
  • Like
Likes anemone
I got to the same answer as @malawi_glenn going through the process directly. I had hoped to find some clever shortcut but in the end I had to just do all the work and I agree, it was definitely not short!
Given, $$f(x,y) = \sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$$then

$$\frac{ \partial f(x,y)}{\partial x}= \frac{1}{2} \left( \frac{2x-\sqrt{2}y}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2x-7\sqrt{2}}{\sqrt{x^2 -7\sqrt{2}x+49}}\right)$$and

$$\frac{ \partial f(x,y)}{\partial y}= \frac{1}{2} \left( \frac{2y-\sqrt{2}x}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2y-10}{\sqrt{y^2 -10y+50}}\right)$$setting these equal to zero and solving (see appendix) gives us;

##y= \large \frac{-7x}{x-7\sqrt{2}}## and ##y =\large \frac{10x}{x+5\sqrt{2}}##

The intersection of these two functions is the minimum. In the positive quadrant these are both monotonically increasing towards asymptotes and thus intersect only once besides at ##(0,0)##. Setting them equal finds the intersection point;

$$ \frac{-7x}{x-7\sqrt{2}} = \frac{10x}{x+5\sqrt{2}}$$ or

$$ -7x (x+5\sqrt{2})= 10x(x-7\sqrt{2})$$ or

$$x(17x -35\sqrt{2})$$ giving ## x=0## or ## x=\large\frac{35\sqrt{2}}{17}## and thus ## y= \large\frac{35}{12}## putting these into the original function gives ##13## as shown in the following appendix.

Appendix:

Set $$\frac{ \partial f(x,y)}{\partial x}= \frac{1}{2} \left( \frac{2x-\sqrt{2}y}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2x-7\sqrt{2}}{\sqrt{x^2 -7\sqrt{2}x+49}}\right) = 0$$ then

$$(2x-\sqrt{2}y)\sqrt{x^2 -7\sqrt{2}x+49} + (2x-7\sqrt{2})\sqrt{x^2 -\sqrt{2}xy +y^2}=0$$or
$$(2x-\sqrt{2}y)\sqrt{x^2 -7\sqrt{2}x+49} = (-2x+7\sqrt{2})\sqrt{x^2 -\sqrt{2}xy +y^2}$$ square both sides;

$$(4x^2 -4\sqrt{2}xy+2y^2)(x^2-7\sqrt{2}x+49)=(4x^2 -28\sqrt{2}x +98)(x^2-\sqrt{2}xy+y^2)$$ the LHS is
$$4x^4 -4\sqrt{2}x^3y +2x^2y^2 -28\sqrt{2}x^3 +49x^2y-14\sqrt{2}xy^2+196x^2-196\sqrt{2}xy+98y^2$$
the RHS is
$$4x^4 -4\sqrt{2}x^3y +4x^2y^2 -28\sqrt{2}x^3 +49x^2y-28\sqrt{2}xy^2+98x^2-98\sqrt{2}xy+98y^2$$ some terms cancel out leaving

$$2x^2y^2-14\sqrt{2}xy^2 +196x^2 -196\sqrt{2} xy=4x^2y^2 -28\sqrt{2}xy^2 +98x^2-98\sqrt{2}xy$$ or
$$2x^2y^2-14\sqrt{2}xy^2-98x^2-98\sqrt{2}xy=0$$ or
$$y^2(x-7\sqrt{2}) -49\sqrt{2}y -49x=0$$ giving a solution ##y= \large \frac{-7x}{x-7\sqrt{2}}##

Now set $$ \frac{ \partial f(x,y)}{\partial y}=\frac{1}{2} \left( \frac{2y-\sqrt{2}x}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2y-10}{\sqrt{y^2 -10y+50}}\right)=0$$ giving

$$(2y-\sqrt{2}x)\sqrt{y^2 -10y+50}+(2y-10)\sqrt{x^2 -\sqrt{2}xy +y^2}=0$$or

$$(2y-\sqrt{2}x)\sqrt{y^2 -10y+50}=(-2y+10)\sqrt{x^2 -\sqrt{2}xy +y^2}$$again, squaring both sides

$$(4y^2-4\sqrt{2}xy+2x^2)(y^2 -10y+50)=(4y^2-40y+100)(x^2 -\sqrt{2}xy +y^2)$$ the LHS is
$$4y^4 -4\sqrt{2}xy^3+2x^2y^2-40y^3+40\sqrt{2}xy^2-20x^2y+200y^2-200\sqrt{2}xy+100x^2$$ the RHS is
$$4y^4 -4\sqrt{2}xy^3+4x^2y^2-40y^3+40\sqrt{2}xy^2-40x^2 y+100y^2-100\sqrt{2}xy+100x^2$$ giving
$$2x^2y^2-20x^2y-100y^2-100\sqrt{2}xy=0$$ or
$$y(2x^2-100)=20x^2+100\sqrt{2}x$$ or
$$y= \frac{20x(x+5\sqrt{2})}{2(x^2+50)}= \frac{10x}{x-5\sqrt{2}}$$

Now put the values for ##(x,y)## into the original equation with ##x=\large\frac{35\sqrt{2}}{17}##, ##y=\large\frac{35}{12}##, ##x^2=\large\frac{2450}{289}## and ##y^2=\large\frac{1225}{144}##

$$\sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$$is
$$\sqrt{ \frac{2450}{289}-7\sqrt{2}\frac{35\sqrt{2}}{17} +49}+\sqrt{\frac{2450}{289}-\sqrt{2}\frac{35\sqrt{2}}{17}\frac{35}{12}+\frac{1225}{144}}+\sqrt{\frac{1225}{144}-10\frac{35}{12}+50}$$
with
$$\sqrt{ \frac{2450}{289}-7\sqrt{2}\frac{35\sqrt{2}}{17} +49}=\sqrt{\frac{2450}{289} -\frac{8330}{289} +\frac{14161}{289}}= \sqrt{\frac{8281}{289}}=\frac{91}{17}$$and

$$\sqrt{\frac{2450}{289}-\sqrt{2}\frac{35\sqrt{2}}{17}\frac{35}{12}+\frac{1225}{144}}=\sqrt{\frac{2450}{289}-\frac{2450}{204} + \frac{1225}{144}} = \sqrt{\frac{207025}{41616}} = \frac{455}{204}$$ and
$$\sqrt{\frac{1225}{144}-10\frac{35}{12}+50}=\sqrt{\frac{1225}{144}-\frac{4200}{144}+\frac{7200}{144}}=\sqrt{\frac{12625}{144}}= \frac{65}{12}$$thus
$$f_{min}=\frac{91}{17} +\frac{455}{204}+ \frac{65}{12}=\frac{1092}{204}+\frac{455}{204}+\frac{1105}{204}=\frac{2652}{204}=13$$[\spoiler]
 
  • Like
Likes malawi_glenn
bob012345 said:
I got to the same answer as @malawi_glenn going through the process directly. I had hoped to find some clever shortcut but in the end I had to just do all the work and I agree, it was definitely not short!
Given, $$f(x,y) = \sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$$then

$$\frac{ \partial f(x,y)}{\partial x}= \frac{1}{2} \left( \frac{2x-\sqrt{2}y}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2x-7\sqrt{2}}{\sqrt{x^2 -7\sqrt{2}x+49}}\right)$$and

$$\frac{ \partial f(x,y)}{\partial y}= \frac{1}{2} \left( \frac{2y-\sqrt{2}x}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2y-10}{\sqrt{y^2 -10y+50}}\right)$$setting these equal to zero and solving (see appendix) gives us;

##y= \large \frac{-7x}{x-7\sqrt{2}}## and ##y =\large \frac{10x}{x+5\sqrt{2}}##

The intersection of these two functions is the minimum. In the positive quadrant these are both monotonically increasing towards asymptotes and thus intersect only once besides at ##(0,0)##. Setting them equal finds the intersection point;

$$ \frac{-7x}{x-7\sqrt{2}} = \frac{10x}{x+5\sqrt{2}}$$ or

$$ -7x (x+5\sqrt{2})= 10x(x-7\sqrt{2})$$ or

$$x(17x -35\sqrt{2})$$ giving ## x=0## or ## x=\large\frac{35\sqrt{2}}{17}## and thus ## y= \large\frac{35}{12}## putting these into the original function gives ##13## as shown in the following appendix.

Appendix:

Set $$\frac{ \partial f(x,y)}{\partial x}= \frac{1}{2} \left( \frac{2x-\sqrt{2}y}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2x-7\sqrt{2}}{\sqrt{x^2 -7\sqrt{2}x+49}}\right) = 0$$ then

$$(2x-\sqrt{2}y)\sqrt{x^2 -7\sqrt{2}x+49} + (2x-7\sqrt{2})\sqrt{x^2 -\sqrt{2}xy +y^2}=0$$or
$$(2x-\sqrt{2}y)\sqrt{x^2 -7\sqrt{2}x+49} = (-2x+7\sqrt{2})\sqrt{x^2 -\sqrt{2}xy +y^2}$$ square both sides;

$$(4x^2 -4\sqrt{2}xy+2y^2)(x^2-7\sqrt{2}x+49)=(4x^2 -28\sqrt{2}x +98)(x^2-\sqrt{2}xy+y^2)$$ the LHS is
$$4x^4 -4\sqrt{2}x^3y +2x^2y^2 -28\sqrt{2}x^3 +49x^2y-14\sqrt{2}xy^2+196x^2-196\sqrt{2}xy+98y^2$$
the RHS is
$$4x^4 -4\sqrt{2}x^3y +4x^2y^2 -28\sqrt{2}x^3 +49x^2y-28\sqrt{2}xy^2+98x^2-98\sqrt{2}xy+98y^2$$ some terms cancel out leaving

$$2x^2y^2-14\sqrt{2}xy^2 +196x^2 -196\sqrt{2} xy=4x^2y^2 -28\sqrt{2}xy^2 +98x^2-98\sqrt{2}xy$$ or
$$2x^2y^2-14\sqrt{2}xy^2-98x^2-98\sqrt{2}xy=0$$ or
$$y^2(x-7\sqrt{2}) -49\sqrt{2}y -49x=0$$ giving a solution ##y= \large \frac{-7x}{x-7\sqrt{2}}##

Now set $$ \frac{ \partial f(x,y)}{\partial y}=\frac{1}{2} \left( \frac{2y-\sqrt{2}x}{\sqrt{x^2 -\sqrt{2}xy +y^2}}+ \frac{2y-10}{\sqrt{y^2 -10y+50}}\right)=0$$ giving

$$(2y-\sqrt{2}x)\sqrt{y^2 -10y+50}+(2y-10)\sqrt{x^2 -\sqrt{2}xy +y^2}=0$$or

$$(2y-\sqrt{2}x)\sqrt{y^2 -10y+50}=(-2y+10)\sqrt{x^2 -\sqrt{2}xy +y^2}$$again, squaring both sides

$$(4y^2-4\sqrt{2}xy+2x^2)(y^2 -10y+50)=(4y^2-40y+100)(x^2 -\sqrt{2}xy +y^2)$$ the LHS is
$$4y^4 -4\sqrt{2}xy^3+2x^2y^2-40y^3+40\sqrt{2}xy^2-20x^2y+200y^2-200\sqrt{2}xy+100x^2$$ the RHS is
$$4y^4 -4\sqrt{2}xy^3+4x^2y^2-40y^3+40\sqrt{2}xy^2-40x^2 y+100y^2-100\sqrt{2}xy+100x^2$$ giving
$$2x^2y^2-20x^2y-100y^2-100\sqrt{2}xy=0$$ or
$$y(2x^2-100)=20x^2+100\sqrt{2}x$$ or
$$y= \frac{20x(x+5\sqrt{2})}{2(x^2+50)}= \frac{10x}{x-5\sqrt{2}}$$

Now put the values for ##(x,y)## into the original equation with ##x=\large\frac{35\sqrt{2}}{17}##, ##y=\large\frac{35}{12}##, ##x^2=\large\frac{2450}{289}## and ##y^2=\large\frac{1225}{144}##

$$\sqrt{x^2-7\sqrt{2}x+49}+\sqrt{x^2-\sqrt{2}xy+y^2}+\sqrt{y^2-10y+50}$$is
$$\sqrt{ \frac{2450}{289}-7\sqrt{2}\frac{35\sqrt{2}}{17} +49}+\sqrt{\frac{2450}{289}-\sqrt{2}\frac{35\sqrt{2}}{17}\frac{35}{12}+\frac{1225}{144}}+\sqrt{\frac{1225}{144}-10\frac{35}{12}+50}$$
with
$$\sqrt{ \frac{2450}{289}-7\sqrt{2}\frac{35\sqrt{2}}{17} +49}=\sqrt{\frac{2450}{289} -\frac{8330}{289} +\frac{14161}{289}}= \sqrt{\frac{8281}{289}}=\frac{91}{17}$$and

$$\sqrt{\frac{2450}{289}-\sqrt{2}\frac{35\sqrt{2}}{17}\frac{35}{12}+\frac{1225}{144}}=\sqrt{\frac{2450}{289}-\frac{2450}{204} + \frac{1225}{144}} = \sqrt{\frac{207025}{41616}} = \frac{455}{204}$$ and
$$\sqrt{\frac{1225}{144}-10\frac{35}{12}+50}=\sqrt{\frac{1225}{144}-\frac{4200}{144}+\frac{7200}{144}}=\sqrt{\frac{12625}{144}}= \frac{65}{12}$$thus
$$f_{min}=\frac{91}{17} +\frac{455}{204}+ \frac{65}{12}=\frac{1092}{204}+\frac{455}{204}+\frac{1105}{204}=\frac{2652}{204}=13$$[\spoiler]
Oh thanks for the reminder, I forgot to post my solution :)

I did not use partial derivatives
 
  • Like
Likes bob012345
malawi_glenn said:
Oh thanks for the reminder, I forgot to post my solution :)

I did not use partial derivatives
Ok, so your solution is a different strategy but still lengthy?
 
  • Like
Likes malawi_glenn
Back
Top