How Do Absolute Values Affect Integration?

Click For Summary
SUMMARY

The discussion centers on the importance of considering absolute values when evaluating integrals, specifically the integral $$\int \sqrt{x^4+2x^3+x^2}$$. The correct evaluation requires recognizing different cases based on the value of x: for $x<-1$ or $x>0$, the integral simplifies to $$\int x^2+x$$, while for $-1 PREREQUISITES

  • Understanding of definite and indefinite integrals
  • Familiarity with absolute value functions
  • Knowledge of piecewise functions
  • Basic calculus concepts, including integration techniques
NEXT STEPS
  • Study the properties of absolute values in calculus
  • Learn about piecewise functions and their applications in integration
  • Explore advanced integration techniques, including substitution and integration by parts
  • Practice evaluating definite integrals with varying conditions
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integration techniques, and anyone looking to deepen their understanding of absolute values in mathematical contexts.

Dethrone
Messages
716
Reaction score
0
I feel like I'm asking the weirdest questions that most people don't ask, but here it is.

Suppose we have this integral (I made it up):

$$\int \sqrt{x^4+2x^3+x^2}$$

Now, I feel most people would say the answer is simply, $\frac{1}{3}x^3+\frac{1}{2}x^2+C$. But technically, that is only true when $x<-1$ or $x>0$. Are we suppose to state all the cases?

Now let's test this on a definite integral:
$$=\int_{-2}^0 \sqrt{x^4+2x^3+x^2}$$
$$=\int_{-2}^0|x^2+x|$$

$$|x^2+x|=\begin{cases}x^2+x, & x<-1, & x>0 \\[3pt] -(x^2+x), & -1<x<0 \\ \end{cases}$$

$$=\int_{-2}^{-1} x^2+x\,dx+\int_{-1}^{0} -(x^2+x)\,dx=1$$

Is this how it is supposed to be computed?
 
Physics news on Phys.org
Rido12 said:
Is this how it is supposed to be computed?

Yep!

If you take the way "most people" would calculate it, you'll just get the wrong answer. :eek:
 
Either my workbook never did that for indefinite integrals, or I haven't encountered any of them.

$$=\int \sqrt{x^4+2x^3+x^2}$$

Case 1: if $x<-1$ or $x>0$
$$=\int x^2+x$$

Case 2: if $-1<x<0$
$$=\int -(x^2+x)$$

Stating all these cases are necessary, right?
 
Rido12 said:
Either my workbook never did that for indefinite integrals, or I haven't encountered any of them.

$$=\int \sqrt{x^4+2x^3+x^2}$$

Case 1: if $x<-1$ or $x>0$
$$=\int x^2+x$$

Case 2: if $-1<x<0$
$$=\int -(x^2+x)$$

Stating all these cases are necessary, right?

Yep.
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 20 ·
Replies
20
Views
4K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 29 ·
Replies
29
Views
5K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K