MHB How Do I Calculate Standard Deviation with Changed Values in a Set?

greprep
Messages
11
Reaction score
0
Can someone guide me through the process of solving the following? Many thanks.

"Given the set {11, 12, 13, 14, 15}, by approximately how much does the standard deviation change if the least value is decreased by 2 and the greatest value is increased by 2?"

These questions are all over the GRE, and I'm lost.
 
Mathematics news on Phys.org
Super Rough (but sometimes useful) approximation for Standard deviation...Range/6 = (max-min)/6

Indirectly...
As is: (15-11)/6 = 2/3
Altered: (17-9)/6 = 4/3
4/3 - 2/3 = +2/3

Directly...
+4 / 6 = +2/3
 
If an approximation is not good enough, the definition of "standard deviation" is "The square root of the mean of the difference from the mean, squared". That is $\sqrt{\frac{\sum (x- \mu)^2}{n}}$ where $\mu$ is the mean and n is the number of terms. (Who ever gave you this problem probably expected you to know that!)

Here, the data set is {11, 12, 13, 14, 15}. The mean is $\frac{11+ 12+ 13+ 14+ 15}{5}= \frac{65}{5}= 13$. Notice that this is the "middle" number in the set. That works because this is an "arithmetic sequence".

Now, subtract that mean from each number and square:
11- 13= -2 and squaring, 4.
12- 13= -1 and squaring, 1.
13- 13= 0 and squaring, 0.
14- 13= 1 and squaring, 1.
15- 13= 2 and squaring, 4.

The mean of those numbers is $\frac{4+ 1+ 1+ 4}{5}= \frac{10}{5}= 2$.

The standard deviation is $\sqrt{2}$.

Now do the same with the altered data set, {9, 12, 13, 14, 17}, decreasing the smallest number, 11, by 2 to get 9 and increasing the largest number, 15, by 2 to get 17. The mean is $\frac{9+ 12+ 13+ 14+ 17}{5}= \frac{65}{5}= 13$ again. (Think about why that is true.)

Now subtract that mean from each number and square:
9- 13= -4 and squaring, 16.
12- 13= -1 and squaring, 1.
13- 13= 0 and squaring, 0.
14- 13= 1 and squaring, 1.
17- 13= 4 and squaring, 16.

The mean of those numbers is $\frac{16+ 1+ 0+ 1+ 16}{5}= \frac{34}{5}= 6.8$.

The standard deviation Is $\sqrt{6.8}= \sqrt{4(1.7)}= 2\sqrt{1.7}$.

The initial standard deviation was $\sqrt{2}$ which is approximately 1.414 while the new standard deviation is $\sqrt{6.8}$ which is approximately 2.608. The standard deviation has increased by approximately 2.608- 1.414= 1.914
 
HallsofIvy said:
1.914

And THIS is why we called it "Super Rough". :-)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top