We evaluate the derivative in terms of the Lambert W function. We have,
$$
y=(x^x)^{{(x^x)}^{...}}
$$
$$
y=(x^{x})^{y}
$$
Taking the logarithm,
$$
\ln(y)=y\ln(x^{x})
$$
$$
\ln(y)=e^{\ln(y)}\ln(x^{x})
$$
and so,
$$
-\ln(y)e^{-\ln(y)}=-x\ln(x)
$$
We consign both sides of the equation to the Lambert W function,
$$
W(-\ln(y)e^{-\ln(y)})=W(-x\ln(x))
$$
The Lambert W function obeys,
$$
W(z)e^{W(z)}=z
$$
and we have,
$$
\ln(y)=-W(-x\ln(x))
$$
Exponentiation yields
$$
y=e^{-W(-x\ln(x))}
$$
and from the property of the Lambert W function,
$$
e^{-W(-x\ln(x))}=\frac{W(-x\ln(x))}{-x\ln(x)}
$$
we find,
$$
y=\frac{W(-x\ln(x))}{-x\ln(x)}
$$
For brevity of notation let,
$$
f(x)=-x\ln(x)
$$
$$
\frac{df(x)}{dx}=-(1+\ln(x))
$$
Taking the derivative,
$$
\frac{dy}{dx}=\frac{(1+\ln(x))W(f)}{f^2}+\frac{\frac{dW(f)}{dx}}{f}
$$
$$
\frac{dW(f)}{dx}=\frac{dW(f)}{df}\frac{df}{dx}
$$
By implicit differentiation,
$$
\frac{dW(f)}{df}=\frac{W(f)}{f(1+W(f))}
$$
and thus,
$$
\frac{dy}{dx}=\frac{(1+\ln(x))W(f)}{f^2}-\frac{(1+\ln(x))W(f)}{f^2(1+W(f))}
$$
$$
=\frac{(1+\ln(x))W^2 (-x\ln(x))}{(x\ln(x))^2 (1+W(-x\ln(x)))}
$$
which holds for ##x\ln(x) \ne \frac{1}{e}##.