Gregg
- 452
- 0
Homework Statement
7. (a) A transformation, T1 of three dimensional space is given by r'=Mr, where
r=\left(<br /> \begin{array}{c}<br /> x \\<br /> y \\<br /> z<br /> \end{array}<br /> \right)
r'=\left(<br /> \begin{array}{c}<br /> x' \\<br /> y' \\<br /> z'<br /> \end{array}<br /> \right)
and
<br /> M=\left(<br /> \begin{array}{ccc}<br /> 1 & 0 & 0 \\<br /> 0 & 0 & -1 \\<br /> 0 & 1 & 0<br /> \end{array}<br /> \right)
Describe the transformation geometrically.
(b)
Two other transformations are defined as follows: T2 is a reflection in the x-y plane, and 3 is a rotation through 180 degrees about the line x=0, y+z=0. By considering the image under each transformation of the points with position vectors, i,j,k or otherwise find a matrix for each T2/
(c) Determine the matrixes for the combined transformations of T3T1 amd T1T3 amd describe each of these tranformations geometrically.
2. Relevant information
\left(<br /> \begin{array}{ccc}<br /> 1 & 0 & 0 \\<br /> 0 & \text{cos$\theta $} & -\text{sin$\theta $} \\<br /> 0 & \text{sin$\theta $} & \text{cos$\theta $}<br /> \end{array}<br /> \right),\left(<br /> \begin{array}{ccc}<br /> \text{cos$\theta $} & 0 & \text{sin$\theta $} \\<br /> 0 & 1 & 0 \\<br /> -\text{sin$\theta $} & 0 & \text{cos$\theta $}<br /> \end{array}<br /> \right),\left(<br /> \begin{array}{ccc}<br /> \text{cos$\theta $} & -\text{sin$\theta $} & 0 \\<br /> \text{sin$\theta $} & \text{cos$\theta $} & 0 \\<br /> 0 & 0 & 1<br /> \end{array}<br /> \right). represent rotations of theta degrees about the x-,y- and z-axes.
3. Attempt
T=\left(<br /> \begin{array}{ccc}<br /> 1 & 0 & 0 \\<br /> 0 & \text{cos$\theta $} & -\text{sin$\theta $} \\<br /> 0 & \text{sin$\theta $} & \text{cos$\theta $}<br /> \end{array}<br /> \right)
Rotation about the x-axis 90 degrees.
(b)
T_2:{x,y,z} \to {x,-y,z}
T_2 =\left(<br /> \begin{array}{ccc}<br /> 1 & 0 & 0 \\<br /> 0 & -1 & 0 \\<br /> 0 & 0 & 1<br /> \end{array}<br /> \right)
(b)
I am stuck here on how to do a rotation about the line x=0, y+z=0. Does this imply it is about the 3D line x=y+z.
(c) This will be simple once I have done the other part.