MHB How Do Vieta's Formulas Apply to Cubic Polynomial Roots?

  • Thread starter Thread starter Mathsonfire
  • Start date Start date
  • Tags Tags
    Cubic Polynomial
AI Thread Summary
Vieta's formulas provide relationships between the coefficients of a cubic polynomial and its roots, allowing for the calculation of sums and products of the roots. The expressions for the sums of pairs of roots, such as $(\alpha+\beta)+(\alpha+\gamma)+(\beta+\gamma)$, can be derived using these formulas. Additionally, the product of sums of pairs of roots, represented by $(\alpha+\beta)(\alpha+\gamma)(\beta+\gamma)$, can also be evaluated through Vieta's relationships. Another expression, $(\alpha+\beta)(\alpha+\gamma)+(\beta+\gamma)(\alpha + \beta)+(\alpha+\gamma)(\beta+\gamma)$, showcases further applications of Vieta's formulas in understanding cubic polynomials. Overall, these discussions highlight the utility of Vieta's formulas in analyzing the relationships between roots of cubic polynomials.
Mathsonfire
Messages
11
Reaction score
0
88
e2dbcd89be56845ac60cd1e86e4c9430.jpg
 
Mathematics news on Phys.org
You can read $\alpha + \beta + \gamma $, $\alpha\beta +\alpha \gamma + \beta \gamma$ and $\alpha \beta \gamma$ off from the polynomial.

Now what's $(\alpha+\beta)+(\alpha+\gamma)+(\beta+\gamma)$?

And what's $(\alpha+\beta)(\alpha+\gamma)(\beta+\gamma)$?

And finally $(\alpha+\beta)(\alpha+\gamma)+(\beta+\gamma)(\alpha + \beta)+(\alpha+\gamma)(\beta+\gamma)$?Those questions all seem to be an exercise in Vietas formulas.
 
Last edited:
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top