How do we know uncertainty principal isnt ignorance?

acesuv
Messages
63
Reaction score
0
what if there's a way to measure speed and direction at the same time and we haven't found it out yet? does it have to do with information theory?
 
Physics news on Phys.org
It is position and momentum which cannot both be known very accurately simultaneously.
 
acesuv said:
what if there's a way to measure speed and direction at the same time and we haven't found it out yet? does it have to do with information theory?
It is not a measurement problem, it's just the way the universe works. The fact that is not a measurement problem is inherent in the HUP

If you'd like to see more discussion, do a forum search. This canard has been debunked here many dozens of times.
 
acesuv said:
what if there's a way to measure speed and direction at the same time and we haven't found it out yet? does it have to do with information theory?

There's no problem with measuring speed and direction simultaneously. The uncertainty principle comes into play when we want to measure two things that in the mathematical formalism of quantum mechanics are represented by non-commuting operators. Speed and direction commute, so they're OK; but position and momentum, or angular momentum along different axes, and many others, are not.

You will find many explanations of the uncertainty principle that say that it's all about measuring one thing having to disturb another. These explanations are based on an erroneous understanding from seventy-five years ago. If you search this forum you will find a number of correct explanations based on what is now understood properly.

The basic issue is that I cannot set up a quantum system in such way that it has known and definite values for two non-commuting observables, call them A and B. I can set the system up so that it has a definite value for A, and then I can measure both A and B to as much precision as I like. However, if I repeat this experiment many times I will find that although I always get the same value for A, I get different values for B. The states in which A has a known value (called "eigenstates" of A) are all states that are not eigenstates of B, meaning that B can take on a range of values.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
According to recent podcast between Jacob Barandes and Sean Carroll, Barandes claims that putting a sensitive qubit near one of the slits of a double slit interference experiment is sufficient to break the interference pattern. Here are his words from the official transcript: Is that true? Caveats I see: The qubit is a quantum object, so if the particle was in a superposition of up and down, the qubit can be in a superposition too. Measuring the qubit in an orthogonal direction might...
Back
Top