How do we parallel transport a vector?

pellman
Messages
683
Reaction score
6
Given a curve c(τ) with tangent vector V, a vector field X is parallel transported along c if

\nabla_V X=0

at each point along c. Let x^\mu(\tau) denote the coordinates of the curve c. In components the parallel transport condition is

\frac{dx^\mu}{d\tau}\left(\partial_\mu X^\alpha + {\Gamma^\alpha}_{\mu\nu}X^\nu\right)=0

If we are given a vector X^\alpha(\tau_0) of the tangent space at c(\tau_0), how do we obtain the parallel transported vector X^\alpha(\tau) for finite \tau-\tau_0? Clearly it will be an integral taken along c but what is the form of that integral?
 
Physics news on Phys.org
Rewrite your equation using the chain rule as

\frac{d X^\alpha}{d \tau} = -{\Gamma^\alpha}_{\mu\nu} \frac{d x^\mu}{d\tau} X^\nu(\tau)

This tells you how the components of the vector ##X## change if you parallel transport it along an infinitesimal increment in the affine parameter ##\tau##. You have to integrate up these changes to get the change when you change ##\tau## by a finite amount. Unfortunately the right hand side depends on ##X## so if you actually write down the integral you get an equation that only determines ##X^\alpha(\tau)## implicitly. It would be straightforward to do the integral numerically, though.
 
Last edited:
  • Like
Likes 1 person
Given a manifold ##M##, a derivative operator ##\nabla## on ##M##, a smooth curve ##\gamma: I\subseteq \mathbb{R} \rightarrow M## with tangent ##V##, and a tensor ##T_0## at some point ##\gamma(s_0)##, there exists a unique tensor field ##T## on ##\gamma## such that ##\nabla_{V}T = 0## and ##T(\gamma(s_0)) = T_0## i.e. ##T_0## is parallel transported along ##\gamma## with respect to ##\nabla##. This statement can be proven by choosing a set of local coordinates and invoking the uniqueness and existence theorem for ODEs.

To actually find ##T##, you just solve the ODE initial-value problem you get from the parallel transport condition (the initial value being ##T(\gamma(s_0)) = T_0##) by choosing a set of local coordinates. So for example in the case of a vector ##X##, you have ##\frac{dX^{\mu}}{ds} + \Gamma ^{\mu}_{\nu\gamma}V^{\nu}X^{\gamma} = 0 ##. This is an ODE that you can (in principle) solve.
 
  • Like
Likes 1 person
pellman, Please note that the way The Duck writes it:
\frac{d X^\alpha}{d \tau} = -{\Gamma^\alpha}_{\mu\nu} \frac{d x^\mu}{d\tau} X^\nu(\tau)
is the ONLY way to write the condition. What you wrote:
\frac{dx^\mu}{d\tau}\left(\partial_\mu X^\alpha + {\Gamma^\alpha}_{\mu\nu}X^\nu\right)=0
is a logical impossibility. Inside the parenthesis you have written ∂μXα as if Xα was a field, a function of four variables, so that you could take its four-dimensional gradient. It's only a function of one variable τ, and only defined along a single worldline.

You have to integrate up these changes to get the change when you change ##\tau## by a finite amount. Unfortunately the right hand side depends on ##X## so if you actually right down the integral you get an equation that only determines ##X^\alpha(\tau)## implicitly. It would be straightforward to do the integral numerically, though.
In other words, it's not an integral, it's a differential equation.
 
  • Like
Likes 1 person
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...
Back
Top