How Do You Evaluate ∫x²√(1-x²) dx Using Trig Substitution?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Dx
Click For Summary
SUMMARY

The integral ∫x²√(1-x²) dx is evaluated using trigonometric substitution, specifically with the substitution x = sin(θ). This leads to the transformation of the integral into I = ∫sin²(θ)cos²(θ) dθ, which can be simplified using double-angle identities. The final result is expressed as (1/8)arcsin(x) - (1/32)sin(4arcsin(x)) + C, confirming the correctness of the approach and the use of identities throughout the evaluation process.

PREREQUISITES
  • Understanding of trigonometric identities, particularly double-angle formulas.
  • Familiarity with integral calculus and techniques of substitution.
  • Knowledge of the arcsine function and its properties.
  • Ability to manipulate and simplify trigonometric expressions.
NEXT STEPS
  • Study the application of trigonometric substitution in integrals, focusing on various functions.
  • Learn about double-angle identities and their use in simplifying integrals.
  • Explore the properties and applications of the arcsine function in calculus.
  • Practice evaluating integrals involving square roots and trigonometric functions.
USEFUL FOR

Students and educators in calculus, mathematicians focusing on integral evaluation, and anyone interested in mastering trigonometric substitution techniques in integration.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
W8.3.6 evaluate
$$\int {x}^{2}\sqrt{1-{x}^{2 }} \ dx
= \arcsin\left({x}\right)/8—\sin\left({4\arcsin\left({x}\right)}\right)/32 + C $$
This is from an exercise on trig substitutions so
$$x=\sin\left({x}\right)
\text{ so }
\int\sin^2 \left({x}\right)\sqrt{1-\sin^2 \left({x}\right)}\ dx
\implies \int\sin^2 \left({x}\right) \cos\left({x}\right) \ dx
$$
No example to follow on this so seeing if this is a good start
 
Physics news on Phys.org
I would let:

$$x=\sin(\theta)\implies dx=\cos(\theta)\,d\theta$$

And the integral becomes:

$$I=\int \sin^2(\theta)\cos^2(\theta)\,d\theta$$

At this point I would look at the double-angle identity for sine...:)
 
$\sin\left({2x}\right)=2\sin\left({x}\right)\cos\left({x}\right)$
Then
$I=2\int\sin^2 \left({2x}\right)\ dx $
?
 
You are correct when you state:

$$\sin(2u)=2\sin(u)\cos(u)$$

However, this then means:

$$\sin(u)\cos(u)=\frac{\sin(2u)}{2}$$

And so the integral becomes:

$$I=\frac{1}{4}\int \sin^2(2\theta)\,d\theta$$

Now a double-angle identity for cosine can be used...the form which relates the cosine of a double-angle to a function of the square of the sine function...:)
 
Double angle of cosine can be used?

$$\cos\left({2\theta}\right)=1-2\sin^2 \left({\theta}\right)$$
 
$$\sin^2(x)=1-\cos^2(x)$$

$$2\sin^2(x)=1-\cos^2(x)+\sin^2(x)$$

$$2\sin^2(x)=1-\cos(2x)$$

$$\sin^2(x)=\dfrac{1-\cos(2x)}{2}$$
 
Last edited:
So then we would have

$$I=\frac{1}{4}\int\frac{1}{2} \ dx
- \frac{1}{4 }\int\frac{\cos\left({2x}\right)}{2} \ dx
\implies
\frac{x}{8} - \frac{\sin\left({2x}\right)}{16} + C
$$
This doesn't look like the answer!
 
karush said:
So then we would have

$$I=\frac{1}{4}\int\frac{1}{2} \ dx
- \frac{1}{4 }\int\frac{\cos\left({2x}\right)}{2} \ dx
\implies
\frac{x}{8} - \frac{\sin\left({2x}\right)}{16} + C
$$
This doesn't look like the answer!

You have forgotten that you converted to a function of $\displaystyle \begin{align*} \theta \end{align*}$.

So from $\displaystyle \begin{align*} \frac{\theta}{8} - \frac{\sin{(2\,\theta )}}{16} + C \end{align*}$ and recalling your original substitution of $\displaystyle \begin{align*} x = \sin{(\theta)} \end{align*}$ what is the answer?
 
karush said:
Double angle of cosine can be used?

$$\cos\left({2\theta}\right)=1-2\sin^2 \left({\theta}\right)$$

Yes, from this you get (I will use $u$ instead of $\theta$ since we are already using $\theta$):

$$\sin^2(u)=\frac{1-\cos(2u)}{2}$$

And so your integral then becomes:

$$I=\frac{1}{8}\int 1-\cos(4\theta)\,d\theta$$
 
  • #10
earlier
$x=\sin\left({\theta}\right)$
so
$\theta = \arcsin\left({x}\right)$
Then back substittute
$\displaystyle \frac{\arcsin\left({x}\right)}{8} - \frac{\sin\left({4\arcsin\left({x}\right)}\right)}{32}+C$
 
Last edited:

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 12 ·
Replies
12
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K