Jhenrique
- 676
- 4
Given
x = \left\{\begin{matrix} y \;\;\; case\;A\\ z \;\;\; case\;B\\ \end{matrix}\right.
So, operate x means to operate the 2 cases of right side? For example:
\int x\;dx = \left\{\begin{matrix} \int y\;dx \;\;\; case\;A\\ \int z\;dx \;\;\; case\;B\\ \end{matrix}\right.
Correct?
x = \left\{\begin{matrix} y \;\;\; case\;A\\ z \;\;\; case\;B\\ \end{matrix}\right.
So, operate x means to operate the 2 cases of right side? For example:
\int x\;dx = \left\{\begin{matrix} \int y\;dx \;\;\; case\;A\\ \int z\;dx \;\;\; case\;B\\ \end{matrix}\right.
Correct?