MHB How Do You Integrate These Trigonometric Functions?

paulmdrdo1
Messages
382
Reaction score
0
I have no idea how to solve these. please help.

∫(sinx/1+sinx)dx

∫(sin^2x cos^2x)dx
 
Physics news on Phys.org
Re: integration of trig func.

I will offer some suggestions:

1.) $$\int\frac{\sin(x)}{1+\sin(x)}\,dx$$

Multiply the integrand by $$1=\frac{1-\sin(x)}{1-\sin(x)}$$. Then apply the Pythagorean identity $$1-\sin^2(\theta)=\cos^2(\theta)$$ on the denominator.

2.) $$\int\sin^2(x)\cos^2(x)\,dx$$

Try the double-angle identity for sine $$\sin(2\theta)=2\sin(\theta)\cos(\theta)$$. Then try the power reduction identity for sine $$\sin^2(\theta)=\frac{1-\cos(2\theta)}{2}$$.
 
Re: integration of trig func.

MarkFL said:
Then try the power reduction identity for sine $$\sin^2(\theta)=\frac{1-\cos(2\theta)}{2}$$.

You [OP] can also reach this result by using the double angle identity for cos if you're unfamiliar with the power reduction identity. See spoiler for derivation.

Using the addition identity for cos: [math]\cos(A+B) = \cos(A)\cos(B) - \sin(A)\sin(B)[/math]

[math]\cos (2A) = \cos(A+A) = \cos^2(A) - \sin^2(A)[/math]

Using the Pythagorean Identity which MarkFL[/color] put in post 2: [math]\cos^2(A) = 1 - \sin^2(A)[/math]

[math]\cos(2A) = 1-\sin^2(A) - \sin^2(A) = 1-2\sin^2(A)[/math]

Now to rearrange it to make [math]\sin(A)[/math] the subject:

[math]\sin(A) = \dfrac{1-\cos(2A)}{2}[/math]
 

Similar threads

Replies
1
Views
2K
Replies
6
Views
2K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
29
Views
4K
Replies
8
Views
2K
Back
Top