MHB How Do You Solve This Trigonometry Challenge Involving Cosine Powers?

Click For Summary
The challenge involves evaluating the expression 2cos^3(π/7) - cos^2(π/7) - cos(π/7). Participants discuss various methods to simplify and solve the expression, including using trigonometric identities and polynomial equations. The conversation highlights the importance of recognizing patterns in cosine powers and leveraging known values of trigonometric functions. One participant successfully provides a solution, demonstrating the effectiveness of their approach. The discussion emphasizes collaboration and sharing problem-solving techniques in trigonometry.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $2\cos^3 \dfrac{\pi}{7}-\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}$.
 
Mathematics news on Phys.org
anemone said:
Evaluate $2\cos^3 \dfrac{\pi}{7}-\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}$.

$2\cos^3 \dfrac{\pi}{7}-\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}$

= $\cos \dfrac{\pi}{7}(2\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}-1)$

= - $\cos \dfrac{\pi}{7}(\cos \dfrac{\pi}{7} - (2\cos^2 \dfrac{\pi}{7}-1))$

= - $\cos \dfrac{\pi}{7}(\cos \dfrac{\pi}{7} - \cos \dfrac{2\pi}{7})$

= -$ 2 \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{14}$

= -$\dfrac{ 2 \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{14} \cos \dfrac{\pi}{14}}{ \cos \dfrac{\pi}{14}}$

= -$\dfrac{ \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{7}}{ \cos \dfrac{\pi}{14}}$

= -$\dfrac{ 2\cos \dfrac{\pi}{7}\sin \dfrac{\pi}{7} \sin\dfrac{3\pi}{14}}{2 \cos \dfrac{\pi}{14}}$

= -$\dfrac{ \sin \dfrac{2\pi}{7} \sin\dfrac{3\pi}{14}}{2 \cos \dfrac{\pi}{14}}$

=- $\dfrac{ \sin \dfrac{2\pi}{7} \cos (\dfrac{\pi}{2} - \dfrac{3\pi}{14})}{2 \cos \dfrac{\pi}{14}}$

= - $\dfrac{ \sin \dfrac{2\pi}{7} \cos \dfrac{2\pi}{7}}{2 \cos \dfrac{\pi}{14}}$

= - $\dfrac{ 2 \sin \dfrac{2\pi}{7} \cos \dfrac{2\pi}{7}}{4 \cos \dfrac{\pi}{14}}$

= -$\dfrac{ \sin \dfrac{4\pi}{7}}{4 \cos \dfrac{\pi}{14}}$

= - $\dfrac{ \cos( \dfrac{\pi}{2}- \dfrac{4\pi}{7})}{4 \cos \dfrac{\pi}{14}}$

= -$\dfrac{ \cos \dfrac{-\pi}{14}}{4 \cos \dfrac{\pi}{14}}$

= - $\dfrac{ \cos \dfrac{\pi}{14}}{4 \cos \dfrac{\pi}{14}}$

= - $\dfrac{1}{4}$
 
Well done, kaliprasad,my friend!(Yes) And thanks for participating!

My solution:

If we let $\cos \dfrac{\pi}{7}=x$, then we're actually asked to evaluate the expression $2x^3-x^2-x$.

[TABLE="class: grid, width: 800"]
[TR]
[TD="width: 600"]From the well-known identity $\cos \dfrac{2\pi}{7}+\cos \dfrac{4\pi}{7}+\cos \dfrac{6\pi}{7}=-\dfrac{1}{2}$,

we can rewrite it as

$\cos \dfrac{2\pi}{7}+\cos \left(\pi-\dfrac{3\pi}{7}\right)+\cos \left(\pi-\dfrac{\pi}{7}\right)=-\dfrac{1}{2}$

$\cos \dfrac{2\pi}{7}-\cos \dfrac{3\pi}{7}-\cos \dfrac{\pi}{7}=-\dfrac{1}{2}$
[/TD]
[TD="width: 200"]Note that
$\begin{align*}\cos \dfrac{2\pi}{7}&=2\cos^2 \dfrac{\pi}{7}-1\\&=2x^2-1 \end{align*}$

and $\begin{align*}\cos \dfrac{3\pi}{7}&=4\cos^3 \dfrac{\pi}{7}-3\cos \dfrac{\pi}{7}\\&=\cos \dfrac{\pi}{7}\left(4\cos^2 \dfrac{\pi}{7}-3\right)\\&=x(4x^2-3)\end{align*}$[/TD]
[/TR]
[/TABLE]

$\therefore \cos \dfrac{2\pi}{7}-\cos \dfrac{3\pi}{7}-\cos \dfrac{\pi}{7}=-\dfrac{1}{2}$ becomes $2x^2-1-x(4x^2-3)-x=-\dfrac{1}{2}$, and it's then purely algebraic work to show that $2x^3-x^2-x=-\dfrac{1}{4}$.
 
Last edited by a moderator:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K