How Do You Solve This Trigonometry Challenge Involving Cosine Powers?

Click For Summary
SUMMARY

The discussion focuses on evaluating the expression \(2\cos^3 \frac{\pi}{7} - \cos^2 \frac{\pi}{7} - \cos \frac{\pi}{7}\). Participants confirm the validity of the approach and express appreciation for contributions. The evaluation of this trigonometric expression is crucial for understanding cosine powers and their applications in mathematical problems.

PREREQUISITES
  • Understanding of trigonometric functions, specifically cosine.
  • Familiarity with polynomial expressions involving trigonometric identities.
  • Basic knowledge of radians and their application in trigonometry.
  • Experience with algebraic manipulation of expressions.
NEXT STEPS
  • Study the properties of cosine functions and their powers.
  • Learn about trigonometric identities and their proofs.
  • Explore polynomial equations involving trigonometric functions.
  • Investigate the application of cosine in solving complex mathematical problems.
USEFUL FOR

Mathematics students, educators, and anyone interested in advanced trigonometry and polynomial expressions involving cosine functions.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $2\cos^3 \dfrac{\pi}{7}-\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}$.
 
Mathematics news on Phys.org
anemone said:
Evaluate $2\cos^3 \dfrac{\pi}{7}-\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}$.

$2\cos^3 \dfrac{\pi}{7}-\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}$

= $\cos \dfrac{\pi}{7}(2\cos^2 \dfrac{\pi}{7}-\cos \dfrac{\pi}{7}-1)$

= - $\cos \dfrac{\pi}{7}(\cos \dfrac{\pi}{7} - (2\cos^2 \dfrac{\pi}{7}-1))$

= - $\cos \dfrac{\pi}{7}(\cos \dfrac{\pi}{7} - \cos \dfrac{2\pi}{7})$

= -$ 2 \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{14}$

= -$\dfrac{ 2 \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{14} \cos \dfrac{\pi}{14}}{ \cos \dfrac{\pi}{14}}$

= -$\dfrac{ \cos \dfrac{\pi}{7}\sin \dfrac{3\pi}{14} \sin\dfrac{\pi}{7}}{ \cos \dfrac{\pi}{14}}$

= -$\dfrac{ 2\cos \dfrac{\pi}{7}\sin \dfrac{\pi}{7} \sin\dfrac{3\pi}{14}}{2 \cos \dfrac{\pi}{14}}$

= -$\dfrac{ \sin \dfrac{2\pi}{7} \sin\dfrac{3\pi}{14}}{2 \cos \dfrac{\pi}{14}}$

=- $\dfrac{ \sin \dfrac{2\pi}{7} \cos (\dfrac{\pi}{2} - \dfrac{3\pi}{14})}{2 \cos \dfrac{\pi}{14}}$

= - $\dfrac{ \sin \dfrac{2\pi}{7} \cos \dfrac{2\pi}{7}}{2 \cos \dfrac{\pi}{14}}$

= - $\dfrac{ 2 \sin \dfrac{2\pi}{7} \cos \dfrac{2\pi}{7}}{4 \cos \dfrac{\pi}{14}}$

= -$\dfrac{ \sin \dfrac{4\pi}{7}}{4 \cos \dfrac{\pi}{14}}$

= - $\dfrac{ \cos( \dfrac{\pi}{2}- \dfrac{4\pi}{7})}{4 \cos \dfrac{\pi}{14}}$

= -$\dfrac{ \cos \dfrac{-\pi}{14}}{4 \cos \dfrac{\pi}{14}}$

= - $\dfrac{ \cos \dfrac{\pi}{14}}{4 \cos \dfrac{\pi}{14}}$

= - $\dfrac{1}{4}$
 
Well done, kaliprasad,my friend!(Yes) And thanks for participating!

My solution:

If we let $\cos \dfrac{\pi}{7}=x$, then we're actually asked to evaluate the expression $2x^3-x^2-x$.

[TABLE="class: grid, width: 800"]
[TR]
[TD="width: 600"]From the well-known identity $\cos \dfrac{2\pi}{7}+\cos \dfrac{4\pi}{7}+\cos \dfrac{6\pi}{7}=-\dfrac{1}{2}$,

we can rewrite it as

$\cos \dfrac{2\pi}{7}+\cos \left(\pi-\dfrac{3\pi}{7}\right)+\cos \left(\pi-\dfrac{\pi}{7}\right)=-\dfrac{1}{2}$

$\cos \dfrac{2\pi}{7}-\cos \dfrac{3\pi}{7}-\cos \dfrac{\pi}{7}=-\dfrac{1}{2}$
[/TD]
[TD="width: 200"]Note that
$\begin{align*}\cos \dfrac{2\pi}{7}&=2\cos^2 \dfrac{\pi}{7}-1\\&=2x^2-1 \end{align*}$

and $\begin{align*}\cos \dfrac{3\pi}{7}&=4\cos^3 \dfrac{\pi}{7}-3\cos \dfrac{\pi}{7}\\&=\cos \dfrac{\pi}{7}\left(4\cos^2 \dfrac{\pi}{7}-3\right)\\&=x(4x^2-3)\end{align*}$[/TD]
[/TR]
[/TABLE]

$\therefore \cos \dfrac{2\pi}{7}-\cos \dfrac{3\pi}{7}-\cos \dfrac{\pi}{7}=-\dfrac{1}{2}$ becomes $2x^2-1-x(4x^2-3)-x=-\dfrac{1}{2}$, and it's then purely algebraic work to show that $2x^3-x^2-x=-\dfrac{1}{4}$.
 
Last edited by a moderator:

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
3
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K