How does a pulsed plasma thruster work?

AI Thread Summary
A pulsed plasma thruster operates by creating a high-temperature plasma through an arc formed across a surface, typically PTFE. The mechanism involves the interaction of moving electrons with a magnetic field, generating a force that propels the plasma and associated material outward. The initial motion of the plasma is influenced by thermal velocities of ions and collisions with electrons. Additionally, charged ions are affected by electric and magnetic field forces, contributing to the thrust. This cyclical process allows for repeated propulsion as the arc extinguishes and reignites.
Leo Liu
Messages
353
Reaction score
156
Screen Shot 2021-10-14 at 11.19.38 PM.png

I really can't get my head around the concept of pulsed plasma thruster. All I know now is that it utilizes ##\vec F=q \dot {\vec r}\times \vec B##. Could someone explain the mechanism to me, please? Thanks!
 
Physics news on Phys.org
Leo Liu said:
View attachment 290680
I really can't get my head around the concept of pulsed plasma thruster. All I know now is that it utilizes ##\vec F=q \dot {\vec r}\times \vec B##. Could someone explain the mechanism to me, please? Thanks!
A short, hand wavy, description:
When the arc forms, hopefully on the right side near the teflon, it creates the B field (out of the page). Then the moving electrons (up) experience the force you described ##\vec F=q \dot {\vec r}\times \vec B## (to the right). So that arc is propelled to the right and pushes a bunch of teflon bits out with it. The arc extinguishes when it's source discharges, and then the cycle repeats.

I like to think that the force is created to oppose a change in the magnetic flux. For a given current amount, the flux can be reduced by increasing the loop area, i.e. pushing the arc away.

This is also how rail guns work, if you want to look into those too.
 
DaveE said:
A short, hand wavy, description:
When the arc forms, hopefully on the right side near the teflon, it creates the B field (out of the page). Then the moving electrons (up) experience the force you described ##\vec F=q \dot {\vec r}\times \vec B## (to the right). So that arc is propelled to the right and pushes a bunch of teflon bits out with it. The arc extinguishes when it's source discharges, and then the cycle repeats.

I like to think that the force is created to oppose a change in the magnetic flux. For a given current amount, the flux can be reduced by increasing the loop area, i.e. pushing the arc away.

This is also how rail guns work, if you want to look into those too.
Thank you. I understand everything now but what sets the plasma in motion.
 
Leo Liu said:
but what sets the plasma in motion.
The arc is initiated across the contaminated surface of the PTFE. There is no atmosphere. The arc forms a high temperature plasma of PTFE breakdown products.
To explain the initial ion velocity, consider that the ions used for propulsion can only travel away from the PTFE, and that is at their thermal velocity in the plasma.
 
Leo Liu said:
Thank you. I understand everything now but what sets the plasma in motion.
Also collisions with the outward moving electrons will push some of the plasma. The charged ions will also feel E and B field forces, like the electrons.
 
Pilot training is critical to safe flying. I watched the following video regarding the crash of TAM 402 (31 October 1996), which crashed into a Sao Paolo neighorbood about 25 seconds after takeoff. https://en.wikipedia.org/wiki/TAM_Transportes_A%C3%A9reos_Regionais_Flight_402 The pilots were never trained to handle such an event (the airline had asked the manufacturer about training for this event), since it was considered too improbable (so rare) by the manufacturer. There was no...
Due to the constant never ending supply of "cool stuff" happening in Aerospace these days I'm creating this thread to consolidate posts every time something new comes along. Please feel free to add random information if its relevant. So to start things off here is the SpaceX Dragon launch coming up shortly, I'll be following up afterwards to see how it all goes. :smile: https://blogs.nasa.gov/spacex/
Back
Top