cragar said:
So I know that the faster the fluid moves the lower the pressure.
Only in the situation where no work is done on the fluid, such as the idealized case of zero viscosity fluid in a pipe of varying diameters.
It's easier to understand this with a propeller. The propeller does work, so Bernoulli relationship doesn't hold in the immediate vicinity of the propeller, but Bernoulli relationship holds in the air flow away from the prop where no work is being done. From NASA link:
We can apply Bernoulli'sequation to the air in front of the propeller and to the air behind the propeller. But we cannot apply Bernoulli's equation across the propeller disk because the work performed by the engine (propeller on air)
violates an assumption used to derive the equation.
http://www.grc.nasa.gov/WWW/K-12/airplane/propanl.html
In the case of wings, the goal isn't maximum thrust, but just enough to support the plane in flight and handle higher load factors in turns. So the lift and drag aspects are less than a prop, and the losses are much less, less work is done on the air, and Bernoulli based math can be used to model lift at moderate wing loadings, but it doesn't take into account the small amount of work done on the air.
cragar said:
Why does the air molecule on the top part magically just speed up ?.
The wing has an effective angle of attack, one or both surfaces of the wing are angled downwards. It the bottom surface is angled downwards, it simply deflects the air flow downwards. If the upper surface is angled downwards, then it introduces a "void" as the the wing passes through the air and the air has to fill in this void (else a vacuum would be created). I've been credited and/or accused of inventing the term "void theory" or "void abhorence theory" for wings, but it's commonly used to explain why drag on a bus is mostly due factors at the back of the bus and not the front. Also the Wiki article on wings mentions "void" (so there's at least one other advocate of "void theory"):
In that case a low pressure region is generated on the upper surface of the wing which draws the air above the wing downwards towards what would otherwise be a void after the wing had passed.
http://en.wikipedia.org/wiki/Wing
The void concept seems obvious, but it's seldom mentioned in articles on lift. The amount of lift that occurs above a wing depends on how the air fills that "void". If the factors, speed, angle of attack, sharpness of leading edge, ... aren't excessive, then the air mostly accelerates downwards (lift) and a bit forwards (drag) to fill the void. If the factors get excessive, the air circulates in small vortices or in a severe case one large vortice to fill in the void. The small vortices don't hurt too much and most wings get this king of turblent flow over most of the air foil. The very large vortice still lowers pressure, but not very much and results in a lot of forwards acceleration of air, so less lift and more drag. Delta wing airfoils are designed to take advantage of small vortice flow near the angled leading edge, allowing for high angles of attack (20 degrees or so).