How Does Coriolis Force Influence Particle Motion in Rotating Systems?

AI Thread Summary
The discussion centers on the application of Lagrangian mechanics to analyze particle motion in a rotating system, specifically addressing the influence of the Coriolis force. Participants debate the appropriateness of using Lagrangian methods versus Newton's second law in a rotating frame, with suggestions to focus on the x-coordinate for simplification. There is uncertainty about deriving potential energy functions relevant to the forces acting on the particle. Ultimately, it is concluded that using Newton's approach may be more straightforward, as the Lagrangian method leads back to similar equations of motion. The conversation highlights the complexities of coordinate systems and the relevance of force components in rotating frames.
Bling Fizikst
Messages
119
Reaction score
16
Homework Statement
refer to image
Relevant Equations
refer to image
Source : JEE Advanced , Physics Sir JEE YT
Screenshot 2024-03-31 234456.png


Screenshot 2024-03-31 234636.png

I tried to attempt it using Lagrangian , so according to the coordinate axes given in the diagram , the position of the particle is let's say ##(0,d,-z)##
Let ##r## be the distance between the particle and the axis of rotation such that it subtends an angle of ##\theta## from the y axis .
So , ##-z=d\tan\theta\implies -\dot{z}=d\sec^2\theta \dot{\theta}##
$$\mathcal{L}=\frac{1}{2}m\dot{z}^2=\frac{1}{2}md^2\sec^4\theta \dot{\theta}^2$$
Now , writing the euler-lagrange equation and simplifying gives : $$\ddot{\theta}=-2\tan\theta \dot{\theta}^2$$
I am not sure how to deal with this .
 
Last edited:
Physics news on Phys.org
I suggest that you use Newton's 2nd law in the frame of the rotating disk to derive the equation of motion for the particle. Setting up a Lagrangian would require introducing potential energy functions corresponding to the forces.

You are not choosing your x-y-z coordinate system as given in the problem. Note that it says "We assign x axis along the chord with origin at middle of the chord". The z axis is perpendicular to the disk. With this coordinate system, the y and z coordinates of the small block have trivial values. You only need to derive an equation of motion for the x coordinate.
 
Last edited:
TSny said:
I suggest that you use Newton's 2nd law in the frame of the rotating disk to derive the equation of motion for the particle. Setting up a Lagrangian would require introducing potential energy functions corresponding to the forces.

You are not choosing your x-y-z coordinate system as given in the problem. Note that it says "We assign x axis along the chord with origin at middle of the chord". The z axis is perpendicular to the disk. With this coordinate system, the y and z coordinates of the small block have trivial values. You only need to derive an equation of motion for the x coordinate.
Actually , i already saw the solution using frame of rotating disk , so , i wanted to try it out with lagrangian (if it makes stuff more straightforward) . Also , about the potential energies , can we find them ? for instance if we consider the x axis as the reference for gravitational potential energy then it's value will be zero . So , i am not sure how potential energy for the other forces will be generated . I have attached the figure , but i think it will lead to the same equation as above . Do you think it's worth trying with lagrangian though?
Screenshot 2024-04-01 022029.png
 
All motion takes place along the x-axis. Find an expression for the x-component of the net force acting on the particle as a function of ##x## (in the disk frame of reference): ##F^{net}_x (x)##.

Then, find a potential energy function ##V(x)## so that ##F^{net}_x (x) = -\dfrac {\partial V(x)}{\partial x}##. The Lagrangian will be ##L = T - V(x)##, where ##T## is the kinetic energy expressed as a function of ##\dot x##.

Of course, when you then set up the Euler-Lagrange equations, you will just get back ##m \ddot x = F^{net}_x (x)## which you could have written at the beginning. So, I don't see any advantage of the Lagrangian approach here.
 
Kindly see the attached pdf. My attempt to solve it, is in it. I'm wondering if my solution is right. My idea is this: At any point of time, the ball may be assumed to be at an incline which is at an angle of θ(kindly see both the pics in the pdf file). The value of θ will continuously change and so will the value of friction. I'm not able to figure out, why my solution is wrong, if it is wrong .
Thread 'Correct statement about a reservoir with an outlet pipe'
The answer to this question is statements (ii) and (iv) are correct. (i) This is FALSE because the speed of water in the tap is greater than speed at the water surface (ii) I don't even understand this statement. What does the "seal" part have to do with water flowing out? Won't the water still flow out through the tap until the tank is empty whether the reservoir is sealed or not? (iii) In my opinion, this statement would be correct. Increasing the gravitational potential energy of the...
Thread 'A bead-mass oscillatory system problem'
I can't figure out how to find the velocity of the particle at 37 degrees. Basically the bead moves with velocity towards right let's call it v1. The particle moves with some velocity v2. In frame of the bead, the particle is performing circular motion. So v of particle wrt bead would be perpendicular to the string. But how would I find the velocity of particle in ground frame? I tried using vectors to figure it out and the angle is coming out to be extremely long. One equation is by work...
Back
Top