How Does Coriolis Force Influence Particle Motion in Rotating Systems?

Click For Summary
SUMMARY

The discussion focuses on the influence of the Coriolis force on particle motion in rotating systems, specifically using Lagrangian mechanics and Newton's second law. Participants analyze the motion of a particle positioned at (0, d, -z) on a rotating disk, deriving equations of motion based on the chosen coordinate system. The Euler-Lagrange equation is applied, leading to the conclusion that the Lagrangian approach may not provide significant advantages over Newtonian methods for this scenario. The necessity of defining potential energy functions in the context of the problem is also emphasized.

PREREQUISITES
  • Understanding of Lagrangian mechanics and Euler-Lagrange equations
  • Familiarity with Newton's second law in non-inertial reference frames
  • Knowledge of coordinate systems in physics, particularly in rotating frames
  • Basic concepts of potential energy and kinetic energy in mechanics
NEXT STEPS
  • Study the derivation of equations of motion using Newton's second law in rotating frames
  • Explore the application of Lagrangian mechanics in non-conservative systems
  • Research potential energy functions in the context of rotating systems
  • Examine the Coriolis effect and its implications in various physical scenarios
USEFUL FOR

Physics students, educators, and researchers interested in classical mechanics, particularly those exploring the dynamics of particles in rotating systems.

Bling Fizikst
Messages
119
Reaction score
16
Homework Statement
refer to image
Relevant Equations
refer to image
Source : JEE Advanced , Physics Sir JEE YT
Screenshot 2024-03-31 234456.png


Screenshot 2024-03-31 234636.png

I tried to attempt it using Lagrangian , so according to the coordinate axes given in the diagram , the position of the particle is let's say ##(0,d,-z)##
Let ##r## be the distance between the particle and the axis of rotation such that it subtends an angle of ##\theta## from the y axis .
So , ##-z=d\tan\theta\implies -\dot{z}=d\sec^2\theta \dot{\theta}##
$$\mathcal{L}=\frac{1}{2}m\dot{z}^2=\frac{1}{2}md^2\sec^4\theta \dot{\theta}^2$$
Now , writing the euler-lagrange equation and simplifying gives : $$\ddot{\theta}=-2\tan\theta \dot{\theta}^2$$
I am not sure how to deal with this .
 
Last edited:
Physics news on Phys.org
I suggest that you use Newton's 2nd law in the frame of the rotating disk to derive the equation of motion for the particle. Setting up a Lagrangian would require introducing potential energy functions corresponding to the forces.

You are not choosing your x-y-z coordinate system as given in the problem. Note that it says "We assign x axis along the chord with origin at middle of the chord". The z axis is perpendicular to the disk. With this coordinate system, the y and z coordinates of the small block have trivial values. You only need to derive an equation of motion for the x coordinate.
 
Last edited:
TSny said:
I suggest that you use Newton's 2nd law in the frame of the rotating disk to derive the equation of motion for the particle. Setting up a Lagrangian would require introducing potential energy functions corresponding to the forces.

You are not choosing your x-y-z coordinate system as given in the problem. Note that it says "We assign x axis along the chord with origin at middle of the chord". The z axis is perpendicular to the disk. With this coordinate system, the y and z coordinates of the small block have trivial values. You only need to derive an equation of motion for the x coordinate.
Actually , i already saw the solution using frame of rotating disk , so , i wanted to try it out with lagrangian (if it makes stuff more straightforward) . Also , about the potential energies , can we find them ? for instance if we consider the x axis as the reference for gravitational potential energy then it's value will be zero . So , i am not sure how potential energy for the other forces will be generated . I have attached the figure , but i think it will lead to the same equation as above . Do you think it's worth trying with lagrangian though?
Screenshot 2024-04-01 022029.png
 
All motion takes place along the x-axis. Find an expression for the x-component of the net force acting on the particle as a function of ##x## (in the disk frame of reference): ##F^{net}_x (x)##.

Then, find a potential energy function ##V(x)## so that ##F^{net}_x (x) = -\dfrac {\partial V(x)}{\partial x}##. The Lagrangian will be ##L = T - V(x)##, where ##T## is the kinetic energy expressed as a function of ##\dot x##.

Of course, when you then set up the Euler-Lagrange equations, you will just get back ##m \ddot x = F^{net}_x (x)## which you could have written at the beginning. So, I don't see any advantage of the Lagrangian approach here.
 
  • Like
Likes   Reactions: MatinSAR

Similar threads

Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 3 ·
Replies
3
Views
5K