With respect, I disagree. Entanglement in quantum reality makes no sense without observer. To support my position I offer the following paper summary (see this link for entire paper:http://citebase.eprints.org/cgi-bin/fulltext?format=application/pdf&identifier=oai%3AarXiv.org%3Aquant-ph%2F0106003 )
Is entanglement observer-dependent?
Italo Vecchi
Vicolo del Leoncorno 5 - 44100 Ferrara - Italy
email:
vecchi@isthar.com
Abstract: The properties of quantum entanglement are examined and the role of the observer is pointed out.
...
We can now go back to entanglement and ask the question: ”What is entanglement?” .The answer may be: ”Entanglement is the observer’s blueprint for state-vector reduction”. It should be clear that entanglement can be defined only in terms of the observer-dependent basis. Prior to observation all bases are equivalent so that speaking about entanglement is meaningless. It is only when state-vector reduction takes place that the system’s state-vector is cast according to an observer-dependent set of rules . Entanglement has an observer-independent support, since the observer’s perceptions are based on the information it extracts from its interaction with the system’s state vector, which is determined by the system’s evolution. However for state-vector reduction the physical features of the system, as encoded in the system’s state-vector, must be interpreted through a blueprint that depends on the observer. Loosely speaking we may say that physical interaction, as described by the relevant Schroedinger equation, may leave ”marks” on 4 the system‘s state-vecto affecting the measurement outcome, e.g. the scrambling/vanishing of superpositions, but such ”marks” are read according to an observer-dependent blueprint only when state-vector reduction takes place. Without an observer the ”marks” are meaningless ripples on the system’s wave-function...